LirTFuzz: Validating Binary Lifters through Context-aware
Fuzzing with GPT

Yutong Zhou

Fan Yang

Zirui Song

The Chinese University of Hong Kong The Chinese University of Hong Kong The Chinese University of Hong Kong

Hong Kong SAR, China

Hong Kong SAR, China

Hong Kong SAR, China

zy319@ie.cuhk.edu.hk yf020@ie.cuhk.edu.hk sz019@ie.cuhk.edu.hk
Ke Zhang Jiongyi Chen Kehuan Zhang
The Chinese University of Hong Kong National University of Defense The Chinese University of Hong Kong
Hong Kong SAR, China Technology Hong Kong SAR, China
zk019@ie.cuhk.edu.hk Changsha, China khzhang@ie.cuhk.edu.hk
chenjiongyi@nudt.edu.cn
ABSTRACT Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.

Analyzing binary code is vital for software engineering and security
research, particularly when the source code is unavailable. How-
ever, understanding, modifying, and retargeting binary code can be
complex tasks. To counter these difficulties, binary lifters have been
introduced. These tools translate binary code into Intermediate Rep-
resentations (IRs), providing several advantages, such as enabling
modifications to executables without source code and facilitating
code retargetability. So far, accurately developing binary lifters for
modern ISAs is universally acknowledged as challenging and error-
prone. Existing validation methods mainly concentrate on isolated
instructions, overlooking interactions among instructions. In this
paper, we introduce LirTFuzz, a novel framework that leverages
instruction context-aware fuzzing to validate binary lifters. L1rT-
Fuzz harnesses an assembly language model to learn interactions
among instructions and generates test cases with the knowledge.
LirTFuzz greatly outperforms the baseline, requiring only 1/1000
of the test cases used by the baseline to identify 26 inconsistencies,
including a previously uncovered category. LirTFuzz significantly
contributes to enhancing the performance of binary lifters, which
are frequently employed in binary security applications.

CCS CONCEPTS

- Security and privacy — Software and application security;
Software reverse engineering;

KEYWORDS
Binary Code Analysis, Binary Lifter, Fuzzing, Machine Learning

ACM Reference Format:

Yutong Zhou, Fan Yang, Zirui Song, Ke Zhang, Jiongyi Chen, and Kehuan
Zhang. 2024. LirtFuzz: Validating Binary Lifters through Context-aware
Fuzzing with GPT . In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14-18, 2024, Salt

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670276

1145/3658644.3670276

1 INTRODUCTION

Binary analysis of executable codes is of utmost importance in
software engineering and security research [6, 7, 11, 19, 28, 34].
This significance arises not only from real-world scenarios where
source code may not be accessible, such as in IoT firmware, malware,
legacy code, or Commercial-Off-The-Shelf (COTS) software, but
also since compilers themselves are not exempt from bugs or errors
[49, 55] and toolchains can be contaminated, e.g., Xcode Ghost [54].

The initial step in binary analysis involves converting a binary
executable into a sequence of instructions through the process of
disassembly. However, the output of disassemblers is still challeng-
ing for humans to comprehend and analyze effectively. Besides,
the disassembly output is specific to the architecture and cannot
be easily retargeted to different platforms. For further reverse en-
gineering, the binary lifter is proposed to translate the assembly
instructions into an intermediate representation (IR), which enables
the users to comprehend, patch, and modify the binary executable
without accessing the source code.

Naturally, the IR obtained from the binary lifter serves as the
foundation for downstream binary analysis tools. Hence, binary
lifters are frequently employed for tasks that demand the utmost
precision, such as identifying security vulnerabilities in the binary
executable. Consequently, any bug or error in the converted IR
can lead to the failure of subsequent binary analysis processes. Re-
grettably, developing an accurate binary lifter to support intricate
modern Instruction Set Architectures (ISAs) [23] is challenging and
error-prone. This is primarily due to the vast amount of information
contained within an instruction set manual, making it difficult to
fully comprehend and encode the effects of numerous instructions.
Compounding the challenge is the constant need for maintenance,
as new instructions are continually introduced to support evolving
CPU features. Furthermore, the specifications provided by hard-
ware manufacturers are often unreliable and may contain mistakes
or lack comprehensive informational semantics for CPU instruc-
tions [13]. Therefore, it is non-trivial to validate the correctness of
binary lifters.

Unfortunately, the aforementioned challenges in implementing
the binary lifter also make the validation challenging. For instance,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670276
https://doi.org/10.1145/3658644.3670276
https://doi.org/10.1145/3658644.3670276

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

the massive instructions within an ISA result in a wide range of
testing. Although there are many efforts such as Kim et al. [27] and
Dasgupta et al. [12] are proposed to validate the binary lifter, all of
them only focused on isolated instruction validation, which means
none of them have considered the interactions among instructions.
Based on our observation, the binary lifter produces different IRs for
the same instruction due to varying contexts. While some IRs are
faithful, others may not, suggesting that validating each instruction
in isolation is insufficient. Therefore, it is crucial to assess the binary
lifter’s capacity to analyze the instruction context and manage the
interactions between instructions.

Our approach. In this paper, we present LirTFuzz, an approach
that uses the instruction context-aware fuzzing technique to create
diverse contexts for validating the binary lifters. Specifically, in or-
der to generate test cases that include relationships among instruc-
tions, we propose to train an assembly language model, founded on
a state-of-the-art machine learning framework, GPT [44], to learn
complex interactions among instructions based on control flow and
data flow. Upon completion of the training, the assembly language
model is then utilized to automatically generate raw assembly test
materials. Next, we refine and amalgamate the raw assembly mate-
rials to create the assembly test cases, which are then compiled into
binary executables. These generated binaries are then fed to binary
lifters, which will output translated IRs. Then LirTFuzz proposes an
IR integrator to convert the translated IRs into recompilable IRs and
further compile them into binary executables. Finally, to validate
the lifted IRs, we execute both the recompiled binary executable
and the original binary on a physical CPU, extracting their runtime
information to compare and detect any inconsistencies.

By utilizing the understanding of interactions among instruc-
tions, LIFTFuzz substantially outperforms the baseline, requiring
only 1/1000 of the test cases used by the baseline to identify 26
inconsistencies, of which 10 have been manually confirmed by the
developers. Impressively, this is a 767% increase compared to the
inconsistencies detected by the baseline. It shows that accurately
lifting an instruction in one context does not guarantee correctness
in others. LirTFuzz also finds inconsistencies within instructions
can lead to incorrect propagation of effects among instructions
and highlights critical issues in binary lifters, such as the lack of
high-level information for program structure recovery.

Contribution. This paper makes the following contributions:

e We propose anovel approach to validate binary lifters. Unlike
the previous studies that focus on verifying the instructions
in isolation, we delve into assessing the binary lifter’s ability
to handle the intricate interactions among instructions.

o We implement LirtFuzz!, to our best knowledge, the first re-
search work to utilize the context-aware GPT-based fuzzing
technique to validate binary lifters, incorporating an assem-
bly language model to learn interactions among instructions
and generate test inputs with contextual knowledge.

e We evaluated LirTFuzz and the baseline on three predom-
inant binary lifters. Experiment results demonstrate that
LirtFuzz significantly outperforms the baseline, identifying
inconsistencies 767% more effectively with just 1/1000 of

ILIFTFUZZ available at https://github.com/zyt755/LIFTFUZZ

Yutong Zhou et al.

Input Binary ——=»| Disassembly Emu'a:_i;P Style

LLVM IR Output <=—]| Optimization Runtime Module
Configuration

Figure 1: Workflow of Binary Lifters

the test cases used by the baseline. Notably, LirTFuzz not
only unearthed a category of issues that remained undiscov-
ered in prior studies but also enriched the understanding of
problems previously identified.

2 BACKGROUND

Binary lifters are important tools in binary analysis to translate
machine code into a higher-level representation, e.g., LLVM IR. The
primary goal is to enable the analysis and manipulation of binary
code at a higher level of abstraction, which can be more easily
understood and modified by researchers and developers. Figure 1
depicts the high-level workflow of binary lifters, which involves
several key steps:

o Step I: Disassembly. The binary code is loaded into the
disassembler, which analyzes the code to determine its archi-
tecture, entry point, and function boundary, etc. Then, the
disassembler converts the machine code instructions into
their corresponding mnemonic representations. To date, the
process of disassembling non-obfuscated executables can be
executed smoothly and accurately [4, 53].

e Step II: Emulation Style Lift. Once the disassembly pro-
cess is complete, the translation is carried out instruction
by instruction, mapping each machine instruction to a se-
quence of corresponding IRs. The primary objective of these
IRs is to accurately emulate machine execution, ensuring
the preservation of semantics, memory updates, and other
side effects of the original machine code within the lifted IRs.
Hence, this step is referred to as emulation-style lifting [32].

o Step III: Runtime Module Configuration. When execut-
ing machine instructions, the runtime environment under-
goes updates, such as modifications to CPU registers, flags,
stack, and heap. Consequently, lifted IR code often incorpo-
rates specific data structures to represent the runtime envi-
ronment and aid in computation. For example, in the case of
McSema, its generated IR code defines a runtime module com-
prising three elements (PC, mem, state): PC denoting the
program counter, mem representing memory and global data
regions, and state maintaining registers and CPU flags [50].

o Step IV: Optimization. Although the output of the emulation-
style lifting process is straightforward, the resulting low-
level IR tends to be quite redundant and difficult to com-
prehend. As illustrated in the Listing 3, a single machine
instruction can be translated into several LLVM IRs, often
involving many complex operations. To tackle this problem,
the binary lifter incorporates many optimization passes to
streamline the output IR, making it easier to analyze and

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

comprehend. However, it is important to note that during the
optimization process, the correspondence with the original
instructions will be lost. This can result in difficulties when
attempting to trace back to the original instruction.

Challenges in Binary Lifting. Despite numerous attempts to
improve binary lifters, they continue to grapple with several chal-
lenges. Firstly, the vast amount of information within an ISA can be
overwhelming, making it difficult to fully understand and encode
the effects of countless instructions. Secondly, ensuring the lifted
IRs accurately emulate the original instruction is a daunting task,
given the need to accommodate a wide array of scenarios during the
lifting process. Furthermore, the absence of a definitive reference
for the output IRs complicates the development of the binary lifter.
Lastly, complex interactions among instructions can bewilder the
binary lifter, leading to incorrect functionality. Therefore, verifying
the correctness of the binary lifter is crucial to instilling confidence
in downstream applications. This underscores the unique value of
our efforts in identifying issues in binary lifters.

3 MOTIVATION AND OVERVIEW
3.1 Problem Definition

Given a program P, we denote with P a lifted program that emulates
P. A state of the program, s; € P, consists of the program counter
pci, the state of the CPU registers R;, the state of the memory M;,
and the execution status E;. For conciseness, we represent a state
of the program P and P with the tuple s; = (pci, Ri, Mj, E;) and
§i= (ﬁci,ﬁi,]\;li,EAi) respectively.

DEFINITION 1. Let P be the lifted program of P. Let S and S be the
status set of program P and P, respectively.

Define that P is consistently lifted to P for any S, iff: ¥§; € P, 3s; €
P, it holds that:

(pci = pe;)&(R; = R)&(M; = M;)&(E; = E;) (1)

According to the definition, if there exist s; € S and §; € S, where
their program counters point to different addresses, their states
of the register are updated differently, their memory is updated
differently, or their execution statuses are different, it indicates the
presence of an inconsistency between P and P. Our objective is to
effectively analyze P in order to investigate whether there are any
inconsistencies with P.

3.2 A Motivation Example

We employ a real-world example from Revng [45] to illustrate our
observation, motivation, and the challenges we encounter. In the
given example, we defined three distinct contexts for the target
instruction jg and input them into Revng.

As shown in Listing 1, the code above the dotted line, specifically
Line 2 to Line 6, represents the test case’s assembly code fed into
Revng [45]. On the other hand, the code below the dotted line, i.e.,
Line 9 to Line 12, represents the output IRs that Revng translated
for the instruction in yellow, specifically Line 3. This format is also
applicable to the other two scenarios.

Motivated Case Scenario 1. In the first scenario, as shown in List-
ing 1, after executing the instruction cmp %rax, 0x40(%rsp), the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: Comparison with closely related works in addressing
challenges and used dataset

System ‘ Year ‘ C1 C2 C3 C4 ‘ Dataset
AVBT? [10] | 2005 | x Xx v X | CoTs
MeanDiff [27] ‘ 2017 ‘ v /X X ‘ Random Generate
SVBL? [12] ‘ 2020 ‘ X v X ‘ Formal Semantic
LifterFuzzer ‘ 2023 ‘ v /v v/ ‘ Customized

23 are abbreviations of their titles respectively.

emulated CPU state represents the necessary condition for the jg
instruction and is stored in the emulated register @cc_src. This
result can be directly utilized as the jump condition in the IRs for
the jg instruction.

Motivated Case Scenario 2. In the second scenario, as shown
in Listing 2, the impact of the previous instruction Line 2, sub
$0x8, %r8d on the emulated $eflags register is solely stored in
@cc_src. Therefore, the IRs for jg instruction retrieve data from the
@cc_src and perform further calculations to determine the jump
instruction.

Motivated Case Scenario 3. In the third scenario, as shown in List-
ing 3, Line 5 jg instruction follows Line 4, 1ea 0x1(%r14), %eax in-
struction, which does not have any impact on the emulated $eflags
register. Therefore, its IRs do not modify related variables repre-
senting $eflags. In order to retrieve the required flag bits, the
IRs for jg instruction have to load data from emulated registers,
@cc_op, @cc_src, @cc_src2 and @cc_dst stored by Line 2, cmp
%rax, 0x40(%rsp) and then perform immediate calculations based
on these data.

As illustrated in the above three scenarios, Revng generates three
unique IRs for the jg instruction due to varying contexts. This un-
derscores that validation of each instruction in isolation falls short
of a comprehensive assessment. Thereby, it is essential to verify
the binary lifter’s capability to manage the interactions between
instructions.

3.3 Challenges

C1: Diverse range of test instruction inputs. The vast number
of instructions within an ISA makes it difficult to create test cases
that cover all possible scenarios. Different opcodes and operands
can be combined into numerous possibilities.

C2: Variety of output IR. As demonstrated in the previous Section
3.2, the binary lifter may generate multiple variations of IRs for a
single instruction. Furthermore, different binary lifters may also
produce different IRs for the same instruction.

C3: Absence of ground truth for output IR. Since the output
of binary lifters is low-level IRs, it differs markedly from the high-
level IRs generated by compilers. As a result, there is no direct
correspondence between the two, making it challenging to establish
a ground truth for direct comparison.

C4: Sophisticated interactions among instruction. Construct-
ing context-aware test inputs is necessary to validate whether the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

/* Assembly codes */

2| 0x40050f : cmp %rax, 0x40(%rsp)
;| 0x400514: jg 40051b <Block_3>

1| 0x400516: cmp %rax, 0x40(%rsp)
5| 0x000000000040051b <Block_3>:

6| 0x40051b: cmp %rax, @0x40(%rsp)

8| /* LLVM IR %/

9| call void (ptr,
10| %158 = load i64, ptr @cc_src, align 8
11| %159 = icmp sgt 164 %156, %158

12| br i1 %159, label ..., label

...) @newpc(...)

Listing 1: Motivated Case Scenario 1: Revng lifted Line 3 jg
instruction to IRs span from Line 9 to Line 12.

/* Assembly codes */

2| 0x400500 : sub $0x8, %r8d

3| 0x400504 : ig 400506 <Block_1>
1| 0x0000000000400506 <Block_1>:

5| 0x400506 : cmp $0x47, %r8b

/* LLWM IR x/

sl call void (ptr, ...) @newpc(...)

9| %sext578 = shl i64 %131, 32

0| %134 = load i64, ptr @cc_src, align 8
11| %sext579 = shl i64 %134, 32

12| %135 = icmp sgt i64 %sext578, %sext579
13| br i1 %1135, label ..., label

Listing 2: Motivated Case Scenario 2: Revng lifted Line 3 jg
instruction to IRs span from Line 8 to Line 13.

Yutong Zhou et al.

1| /* Assembly codes */

)| 0x4004f4: cmpb $0x5f, 0x2(%rbp)
;| 0x400478 : jg 400500 <Block_1>
1| 0x4004fa: lea Ox1(%r14), %eax
5| 0x40043: jg 400500 <Block_1>
| 0x0000000000400500 <Block_1>:
0x400500: cmpb $0x5f, 0x2 (%rbp)

9 /* LLWVM IR */
| call void (ptr, ...) @newpc(...)

11| %148 = load i64, ptr @cc_dst, align 8

12| %149 = load i64, ptr @cc_src, align 8

13 %150 = load i64, ptr @cc_src2, align 8

14| %151 = load i32, ptr @cc_op, align 4

15| %152 = call i64 @helper_cc_compute_all(...)

16| store i64 %152, ptr @cc_src, align 8
17| store i32 1, ptr @cc_op, align 4

18| %153 = 1lshr i64 %152, 4

19| %154 = xor 164 %153, %152

0| %155 = and 164 %154, 192

1| %156 = icmp eq i64 %155, @

2| br i1 %156, label ..., label

Listing 3: Motivated Case Scenario 3: Revng lifted Line 5 jg
instruction to IRs span from Line 10 to Line 22.

Figure 2: Motivation cases that show the same assembly instruction with different contexts are lifted into different IRs.

binary lifter can handle interactions among instructions. Nonethe-
less, extracting and utilizing these complex interactions for testing
purposes can be quite difficult.

3.4 Prior Efforts and Our Insights

As shown in Table 1, prior works like [10, 12, 27] only try to address
the C1, C2, and C3, without fully considering C4 and ignoring in-
teractions between the instructions. Chen et al. [10] directly utilize
a pre-existing data set, EEMBC 1.1 benchmark [16], to evaluate their
validator. Unfortunately, this dataset is not designed for validating
the binary lifter. Kim et al. [27] employ the symbolic summary
method to streamline randomly generated test cases and uphold
coverage. Dasgupta et al. [12] leverage the formal semantics of
x86 instruction and LLVM IR to achieve comprehensive coverage.
They have assumed that the binary lifter processes instructions
without considering the corresponding contexts, consistently gen-
erating identical IRs for each identical instruction. This results in
each instruction being validated in isolation, thereby overlooking
the potential interactions among instructions. However, such an
assumption is wrong, as we observed that the binary lifter can pro-
duce different IRs for the same instruction with different contexts.

Based on our observation, we highlight the inadequacy of solely
validating individual instructions and stress the importance of ver-
ifying the binary lifter’s capability to handle interactions among
instruction contexts accurately. The primary focus is on creating
test cases that not only ensure the syntactic correctness of the test in-
structions but also encapsulate the intricate interrelationships among

these instructions. The previous rule-based generator in [27], while
ensuring the correctness of instruction syntax, did not sufficiently
incorporate diverse interactions among instructions and did not
consider test case mutations. To mitigate this issue, we employ a
GPT-based assembly language model. The ability of GPT [44] to
understand complex patterns is crucial for producing instructions
that are not only syntactically and semantically precise, but also
encompass intricate interconnections. Simultaneously, we provide
varied prompts to the assembly language model to produce ample
test case mutations. This use of GPT allows LirTFuzz to generate
high-quality and diverse test cases that meet comprehensive testing
requirements.

3.5 Overview

Figure 3 presents the overview of LirTFuzz, which consists of three
main components: the test case generator, the IR integrator, and
the validator. The test case generator is designed to produce test
assembly codes and compile them as test inputs for fuzzing tests.
Once the test inputs are obtained and fed into the binary lifter, the
IR integrator is employed to ensure that the output IRs of the bi-
nary lifter can be recompiled. Afterwards, the IR integrator carries
out instrumentation for subsequent verification and backtracking
purposes. Lastly, the validator is utilized to verify the consistency
between the instructions on the physical CPU and their correspond-
ing IRs, generating reports accordingly. LirTFuzz generally applies
to verify binary lifters from any ISA, e.g., x86, ARM, RISC-V, MIPS,

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

PowerPC, to an intermediate representation, such as LLVM IR. In
Section 4, we will introduce each component of LirrFuzz.

4 DESIGN OF LIFTFUZZ

4.1 Test Case Generator

As previously mentioned, the preliminary step for utilizing L1rT-
Fuzz requires using the binary executables as test inputs to fuzz the
binary lifter. Consequently, LIrTFuzz incorporates a test case gener-
ator designed to produce context-based test cases that encapsulate
the interactions among instructions. The generator’s workflow is
depicted in the Figure 4, with context extraction serving as the
initial phase. As outlined in Section 4.1.1 and Section 4.1.2, we
observe that the code context information is naturally embedded
inside the Control Flow Graph (CFG) and Data Flow Graph (DFG),
so we extract the instruction sequences that bear the control flow
and data flow information to construct our dataset. This dataset
is then split into two parts, each serving a unique function. One
part is used for model training (Section 4.1.3), where the sequences
of instructions are segmented into tokens and then fed into the
GPT model, enabling the model to learn the context information
among instructions and subsequently generate test cases based on
this knowledge. Once the model’s training is complete, the remain-
ing instruction sequences serve as seed input, providing the fully
trained model with varying initial contexts for test generation, as
elaborated in Section 4.1.4.

4.1.1 Collection of Interactions Between Instructions. As mentioned
in Section 3, it is crucial to verify the ability of binary lifters to
accurately handle the interactions between instructions. However,
it should be noticed that instructions within a program interact
with each other in a multitude of ways. Here are some of the key
interactions between instructions:

Data dependencies. Instructions can have dependencies on the
data produced by previous instructions. For instance, if instruction
A writes a value to a register and instruction B subsequently reads
from the same register, instruction B relies on the execution result of
instruction A. Proper management of these dependencies is crucial
to ensure accurate execution.

Control flow. Instructions have the ability to modify the execution
flow within a program. For instance, conditional branch instruc-
tions like jz/jnz or je/jne can alter the sequence of instructions
execution based on specific conditions.

Memory access. Instructions can read from or write to memory
locations, enabling data storage, retrieval, or modification. Proper
synchronization is necessary when multiple instructions access the
same memory location to prevent conflicts.

Instruction sequencing. Instructions are executed sequentially
by the processor, following the program’s control flow. The order in
which instructions are executed can affect the program’s behavior
and the states of registers and memory.

Instruction dependencies. Some instructions have specific or-
dering requirements. For example, if an instruction modifies a flag,
subsequent instructions that depend on the state of the flag should
be executed after it. Similarly, instructions that modify the memory

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

should ensure that the memory is in a consistent state before other
instructions access it.

To our best knowledge, none of the prior works [10, 12, 27] has
fully considered these interactions, which means the existing meth-
ods did not effectively meet the goals that comprehensively validate
the binary lifter. To this end, LirTFuzz has utilized an assembly
language model to collect interactions among instructions.

4.1.2 Context Extraction. The goal of context extraction is to con-
struct a dataset consisting of varying contexts, which not only
significantly boosts the model’s ability to understand the relation-
ships among instructions but also provides the model with diverse
initial contexts for generating test cases. As previously mentioned
in Section 4.1.1, we have observed that the code context information
is naturally embedded within structures such as the CFG and DFG.
Based on this observation, we first disassemble binaries and extract
def-use relations using Binary Ninja [52]. Next, we analyze depen-
dencies that exist among registers, memory locations, and function
call arguments. Additionally, we consider the implicit dependencies
introduced by eflags. Then, we obtain each operand’s data depen-
dencies and establish def-use relationships between instructions
and their respective dependent instructions. Subsequently, we ex-
tract instruction sequences from control flow sequences as well as
sequences guided by def-use relationships to construct our dataset.
Finally, the dataset is partitioned into two parts, each fulfilling a
distinct purpose. One part is used to train the model as elaborated
in Section 4.1.3. The other part acts as seed input to supply the well-
trained model with initial varying contexts for test case generation,
as described in Section 4.1.4.

4.1.3 Design of Assembly Generator Model. As mentioned in Sec-
tion 4.1.1, previous approaches have proven ineffective in generat-
ing context-aware test cases. Additionally, to improve the efficiency
of fuzzing testing, it is crucial for test cases to include an adequate
amount of mutations and variations, rather than strictly adhering
to normal instruction relationships. In order to address these chal-
lenges, we have shifted our attention to machine learning methods.
After thorough consideration, we have chosen to base the assem-
bly generator model of LirTFuzz on GPT [44], incorporating the
following significant design considerations:

Tokenization. In order to augment the deep neural network’s
comprehension of the internal structures within the instruction,
LirtFuzz integrates two methodologies: position embedding and a
training task from the field of Natural Language Processing (NLP)
known as Causal Language Modeling (CLM) [43]. Position embed-
ding equips our assembly language model with information about
the placement of basic tokens in an instruction, a crucial aspect
because the order of tokens can alter the interpretation of an in-
struction. The CLM task facilitates the training of our assembly
model to understand the sequential relationships and dependencies
inherent in the instructions.

To capture the intricate internal formats of instructions, we
employ a fine-grained strategy that involves decomposing each in-
struction into its constituent parts. This approach allows the model
to analyze and understand the structure of instructions at a granular
level. Inspired by PALMTREE [31], we treat each instruction as a dis-
crete sentence, breaking down the instruction into its fundamental

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Yutong Zhou et al.

— e
1Compi|e
Ti lat
ranslate
Collect Load
Runtime
Information

Figure 3: Overview of LirrFuzz

[SOI] push rbp

[EONl [SOll mov Casual

[
I Input :
1 —_
1 H Generate
I [
1 =T
| o e e il
Extract IR
Port to
c i Framework
ompile Instrument
—
Execute
—_—
1.push rbp |
g.mc:’v rbp',]rszp8 Data Flow |
.sub rsp,0x. Si
4.mov rbx,rex DI:Q/" Instruction equences | _push rop
5.lea rdi,[rip+0x9c] |-~ Sampling, |

6.mov al,0x0
7.call 40030 SN
<printf@plt>

8.xor eax,eax
9.pop rbp
10.ret

A, S

|:> mov rbp,rsp |:> rbp rsp [EOI] Model
Control Flow
Sequences |
: | sub rsp,0x28
|

Language

[son sub rsp

0x28 [EOI]

Figure 4: Workflow of test case generator in LrrTFuzz

components, encompassing opcodes, registers, intermediate num-
bers, strings, and symbols, among others. For example, given the
instruction, lea rbp, [rsp+0x70], we dissect it into the following
elements: “lea”, “rbp”, “[”, “rsp”, “+”, “0x70”, and “]”.

LirtFuzz employs a specific normalization strategy to mitigate
the Out-Of-Vocabulary (OOV) issue induced by strings and constant
numbers. The special token [string] is utilized to substitute strings.
For constant numbers, it is necessary to ascertain whether it repre-
sents an address or a value. If it is an address, the precise value is
not particularly beneficial for our models and can be replaced with
the [address] token. Conversely, if it is a value, it might contain
vital information pertaining to accessed local variables, function
arguments, and data structure fields. Therefore, LirTFuzz retains
these as tokens and encodes them using one-hot vectors. Given
that LirtFuzz is founded on GPT, we have incorporated additional
tokens, [SOI] and [EOI], to enhance the model’s learning capacity.
Here, [SOI] signifies the beginning of an instruction, while [EOI]
denotes its end.

Assembly Language Model. Moreover, we would like to train
the assembly language model to capture the relationships among
instructions. Given that GPT handles tokens from left to right and
lacks a clear concept of sentences, it becomes challenging for GPT
to capture the relationships between instructions or comprehend
the boundaries between them. To address this limitation, inspired
by Next Sentence Prediction (NSP) [14], we preprocess the training
data by following BERT’s method. This involves clearly dividing
each instruction and incorporating the concept of the instruction
into the input. By introducing explicit instruction boundaries, our

model can potentially capture the relationships among instructions
and improve its understanding of the input structure. Furthermore,
unlike natural language, the semantics, syntax, usage, and order
of instructions in programming languages are strictly specified
and cannot be altered arbitrarily. For example, the jmp instruction
must be followed by a legal address symbol; otherwise, an error
will occur. Consequently, the def-use relation among instructions is
clearly defined and remains unchanged even with varying compiler
optimizations. Leveraging these characteristics, we incorporate data
dependencies into the training data. In this way, we enhance our
model’s language generation capabilities while also enabling it to
learn the relationships among instructions in a manner similar to
BERT’s NSP task.

As depicted in Figure 5, the initial token of this amalgamated
input is an unique token, denoted as [SOI], while the final token is
represented as [EOI]. Subsequently, we incorporate the position
embedding into the token embedding, using this blended vector
as the input for the transformer network. These enhance the deep
neural network’s understanding of the inherent structures within
the instruction.

Causal Instruction Modeling. The task we employ to pre-train
the assembly language model, which we call Causal Instruction
Modeling (CIM), is based on Causal Language Modeling (CLM). The
objective of CIM is to predict the subsequent token in an instruc-
tion, given the preceding words. Given an instruction, the notation
t; represents a token in a sequence of instructions I = t1, ..., t,. The
transformer decoder in the model is trained to predict the next to-
kens in the sequence. It outputs a probability for each possible token

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

Input [SOI] push rbp sub rsp 0x28 [EOI]
[} [} Il [} | || (]
Position | E, E, E, Eqo Ey Eq Eis
+ + + + + + +
Token Eisop Epush Ep Ecup E:p Eoxzs Eieon

Figure 5: Input representation

Output [SOI] mov rbp
) L))
| 1 1
Transformer-Decoder Layer

1 1 1
| 1 |
Input [SOI] push rbp [EOI] [soI] mov

Figure 6: Prediction representation

t; using a softmax layer located at the top of the transformer net-
work. We use a standard language modeling objective to maximize

the following likelihood:

1]
L) =) (logP(tilti_k ... ti-15©)) ®)
i=1

where k is the size of the context window and the conditional
probability P is modeled using a neural network with parameters
0. These parameters are trained using AdamW [33].

U= (tj_gs - ti-1) (3)

ho=UW, + W, 4)

hy = Fs(hj—1)Vl € [1,n] ©)
exp(hnWe (ui)")

P(uiluj_gy .o ui-1;0) = (6)

% exp(hnWe (ur)T)
£=0

where U is the context vector of tokens, n is the number of layers,
W is the token embedding matrix, W), is the position embedding
matrix, Fs(-) is the function that leverages the algorithm in the
position-wise feed-forward network together with self-attention to
calculate the hidden vector hj, and N is the number of tokens.

Figure 6 illustrates how the above formulas guide the model to
learn the inherent structures within the instructions, as well as the
interactions among them. Initially, the model is fed with “[SOI]
push rbp [EOI]”. In order to correctly predict the next token, the
model need to understand the meaning and usage of [SOI] and
[EOI], recognizing that “[SOI] push rbp [EOI]” constitutes a com-
plete instruction. This understanding allows the model to anticipate
that the next token should be the start of a new instruction, thereby
correctly predicting that the next token will be [SOI].

In the following step, the token [SOI] is integrated with the
preceding instruction sequence to form a new sequence, “[SOI]
push rbp [EOI] [SOI]”, which is re-input into the model. To pre-
dict the subsequent token, the opcode of the next instruction, the
model must comprehend mov is the opcode of instruction and the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

interactions between push and mov instructions. Based on this
understanding, the model predicts that the next token will be mov.

Subsequently, the token mov is combined with the previous
instruction sequence and re-input into the model. Based on the un-
derstanding of the inherent structures within the mov instruction
and interactions between push rbp and mov rbp rsp, the model
then predicts the next token to be rbp.

This cycle of predicting tokens, integrating them with the pre-
vious instruction sequence and re-inputting them into the model,
continues until an instruction sequence of the specified length is
generated. Each generation demands that the model accurately
learns the inherent structures within the instruction and inter-
actions among instructions. Failing to do so, the model could be
overwhelmed by a plethora of alternative tokens, leading it to make
incorrect selections. Under such circumstances, the model would
receive negative feedback, prompting it to adjust its parameters
until it is capable of accurately predicting the subsequent token.
Hence, upon completion of the model training, the model has ef-
fectively learned the inherent structures within the instruction as
well as interactions among instructions.

4.1.4 Binary Executable Generation. After training the assembly
model, we generate test data without using traditional input mu-
tation methods like random mutation, combination, and permuta-
tion. These methods can inevitably disrupt the interactions among
the model-generated instructions. Instead, we employ two distinct
methods to incorporate sufficient variation in the test cases.

Firstly, we provide the model with varying contexts. As discussed
in Section 4.1.2, we construct our dataset by extracting instruction
sequences that carry control-flow and data-flow information from
CFGs and DFGs. This data is then utilized as seed input to provide
the model with diverse initial contexts. For instance, as depicted
in the Listing 1, Listing 2, and Listing 3, the target instruction jg
is tested within diverse contexts. This approach enables the gen-
eration of varied test cases, facilitating the multiple execution of
the testing instruction rather than merely testing the same instruc-
tion once, as was the practice in prior work [10, 12]. Secondly, we
enable the model to continuously generate as many instructions
as possible. By capitalizing on the characteristics of the Attention
mechanism [51] and the model’s diversity, we observe that an in-
crease in the number of generated instructions correspondingly
enriches the context among these instructions. Additionally, hal-
lucinations are allowed and can be regarded as mutations in the
test input. Compared to traditional random input mutation, these
methods not only eliminate a multitude of meaningless test cases,
but also supply a diverse range of context information, which is
crucial for validating the binary lifters.

Token Assembler. Since the model-generated tokens are not in-
terpretable to the compiler, the Token Assembler is introduced for
syntax-checking and organizing tokens into instructions that will
later be handled by the compiler properly. The Token Assembler
functions through three primary operations. The first one involves
removing tokens that are helpful in training the model while re-
dundant in the compilation. The second one is dedicated to adding
punctuation, whereas the third one is aimed at eliminating syntax
errors. For example, when the output sequence “[SOI] push rbp

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

[EOI] [SOI] mov rbp” depicted in Figure 6 is fed into the Token As-
sembler, it initially removes tokens such as [SOI] and [EOI], which
are meaningless to the compiler. Subsequently, the Token Assem-
bler incorporates “\n” to split the sequence into two instructions.
Ultimately, the Token Assembler conducts syntax-checking and
discards the tokens mov and rbp due to their inability to construct
an incomplete instruction.

It is noteworthy that the diverse contexts inside seed inputs and
the contextual knowledge that the model learned from the training
dataset are sufficient for LirTFuzz to generate high-quality test
cases. Hence, the Token Assembler’s sole contribution is to ensure
the smooth compilation of tokens into binary executables without
directly affecting the overall performance.

The binary executables serve two unique purposes. Firstly, it is
sent to IR Integrator as test data, discussed in Section 4.2. Secondly,
it is sent to the Validator as ground truth, elaborated in Section 4.3.
Unlike previous work [12, 27] that translated the emulation-style
IR into another IR for comparison, we conducted our unification in
the same IR as the original binary lifter. This method preserves the
semantics and usage of the emulation-style IR, thereby eliminating
potential errors that may be introduced during translation.

4.2 IR Integrator

4.2.1 Converting IR to Recompilable. After obtaining binary exe-
cutables, LirTFuzz feeds them into the binary lifter, which initially
generates emulation-style IRs. These IRs are then optimized into
the final IRs. Hence, the accuracy of the initial emulation-style IRs
directly affects the quality of the final output, making it significant.
In addition, unlike the optimized IRs, the emulation-style IRs not
only maintain a correlation with the original instruction but also
preserve the semantics. This makes them particularly useful for
comparison testing. Based on these, we select the emulation-style
IRs from the output of the binary lifter for the verification purpose.

Unfortunately, not all emulation-style IRs can be successfully
compiled and executed. Simultaneously, various binary lifters pro-
duce different styles of IRs, which need to be unified before compar-
ison. Besides, we also need to instrument the emulation-style IRs
to extract the runtime state, confirm its accuracy, and pinpoint any
incorrect IRs. As a result, there exists a need for uniform processing
of the emulation-style IRs produced by different binary lifters. To
achieve this, LiIrTFuzz provides an IR framework to ensure that
the emulation-style IRs can be recompiled and run smoothly. This
framework has made the following preparations. First, it unifies
different representations of machine states from various IRs. Next,
it provides runtime modules that support the emulation-style IRs.
Then, it extracts and merges the related dependencies of differ-
ent IRs into the recompilable file. Lastly, it instruments the IRs for
validation and backtracking purposes.

Machine State. Since different binary lifters might utilize diverse
data types and different data structures to depict the same physical
CPU register, standardizing the different machine state represen-
tations produced by various binary lifters into a single format is
necessary. Furthermore, different binary lifters have distinct initial-
ization methods. Therefore, to guarantee the consistency of their
initial states, the emulation-style IRs must be subjected to a uniform
initialization process.

Yutong Zhou et al.

Algorithm 1: Overview of Validator
Input: Log file L
Binary executable B
Output: Inconsistencies I
1 Initialize the ground truth GT with L
2 for record € L do

3 GT.next();
4 if GTaddress # record.address then
5 Find different execution path p
6 Append p to I
end
7 if GT.CPU._state # record.CPU_state then
8 Find different CPU state Cs
9 Append Cs to I
end
10 if GT.memory # record.memory then
11 Find different memory state Mg
12 Append M to I
end
end
13 if GT.exit_state # record.exit_state then
14 Find different final exit status Eg
15 Append Es to I

end

Runtime Module. All operations of the emulation-style IRs sim-
ulate real instructions. When executing real instructions, updates
occur in the runtime environment, such as registers, flags, and stack
operations. Hence, to ensure the smooth recompilation and exe-
cution of the emulation-style IRs, the IR framework replicates an
environment similar to a real physical CPU. Besides, due to these
modifications, runtime functions, e.g., @rintf() of GLIBC [18],
also require to be rewritten to ensure that the program has the
necessary resources and environment to run smoothly. All these
processes must be transparent to the emulation-style IRs, ensuring
the verification is accurate and does not introduce new errors.

Related Dependency. Each binary lifter has its own unique meth-
ods of representation and calculating intermediate states, e.g., the
@helper_cc_compute_all() function of Revng. The accurate func-
tioning of their IRs relies heavily on these functions and variables.
We will not alter this part of the emulation-style IRs, but rather
directly transplant them into the recompilable file. Let us take
the @helper_cc_compute_all() function as an example. Since
this function is responsible for calculating the state of eflags, we
employ a probe to directly output its return value whenever this
function is invoked. Subsequently, we compare this value with the
physical eflags. This approach keeps our framework lightweight
and guarantees that no new errors will be introduced during the
integration process.

Instrumentation. The final step in processing emulation-style IRs
involves inserting the instrumentation code into each instruction’s
corresponding IRs. Instrumentation serves two purposes. Firstly, it
outputs the machine state after the execution of each instruction’s

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

corresponding IRs, verifying whether IRs faithfully simulate the
instruction. Secondly, it establishes a mapping relationship between
the instruction and corresponding IRs. This can act as a point of
reference for backtracking when inconsistencies are later identified.

Upon completing the above steps, the emulation-style IRs can be
successfully compiled and executed. Thanks to the instrumentation,
when the recompiled file is run, the file simultaneously outputs a
log file that records the machine state after the execution of each
instruction’s IR block. This log file is then sent to the validator,
introduced in the following section, for verification.

4.3 Validator

As depicted in Figure 3, the log file from the IR integrator serves
as the verification object, and all of the original binary executables
are sent to the validator for comparison and verification. Unlike
previous work [10] that relied on an emulator as the ground truth,
LirtFuzz adopts a more reliable method. We utilize the physical
CPU as an oracle. Since the corresponding machine state after
executing IRs of each instruction has been recorded in the log file,
we only need to run the original binary executable on the physical
CPU to extract the runtime machine state as the ground truth. We
then compare the ground truth with the records in the log file one
by one to identify any inconsistency. This method eliminates errors
introduced by the emulator and streamlines the entire verification
process, making it more lightweight.

The algorithm 1 explains the algorithm of the validator. The
validator takes both the log file and the original binary executable
as inputs. Then, the validator loads the original binary into the
CPU. Subsequently, the validator initializes the machine state of the
binary executable to match that of the log file. Finally, the validator
executes one instruction of the original binary, extracts the machine
state as the ground truth, and compares it with the corresponding
record in the log file. If the address of the log record differs from
the ground truth, it indicates an incorrect execution path in the
emulation-style IRs. Similarly, if the machine state, or the final
execution status of the log record differs from the ground truth, it
suggests that the emulation-style IRs do not faithfully simulate the
original instruction.

5 EVALUATION

In this section, we present the experimental evaluation of LirTFuzz.
We aim to address four questions through these experiments:
RQ1. Can LirTFuzz learn interactions among instructions and then
generate test cases with various contexts?

RQ2. Can LirTFuzz identify any unknown inconsistencies resulting
from interactions among instructions?

RQ3. Can LirtFuzz find inconsistencies inside a single instruction?
RQ4. Can LirtFuzz find the root cause of the inconsistencies be-
tween the assembly instructions?

Implementation. LirTFuzz is implemented with over 5,500 lines
of code, incorporating both Python and LLVM IR. The test case
generator in LIFTFuzz is built upon minGPT [26] and PALMTREE [31].
The reported results are achieved in a setting with a learning rate
of 5e-4, a dropout rate of 0.1, and a batch size of 64. The system also
incorporates 8 transformer decoder layers with 16 self-attention
heads and 512-dimensional hidden states.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 2: Evaluation against LSTM and NMT

Model | Perplexity | BLEU | Self-BLEU
LSTM | 253306 | 48.51 | 20.87
NMT | 13.8120 | 65.18 | 90.33
GPT | 15.0192 | 6249 | 25.25

Dataset. To implement the test case generator, we collected a total
of 16 open-source projects to provide training data for assembly
language model training, and these projects are widely used in
recent five years of reverse engineering research works [15, 25,
40, 41]. Specifically, the collected projects are relevant to utilities
(Attr, Bash, Binutils, Coreutils, Diffutils, Findutils, Make,
Sg3_utils, Tar), database management (Sqlite3), and networking
(Httpd, Openssh, Openssl, Putty, Tmux, Wget). Finally, our training
dataset collects more than 200 million instructions as the starting
point for assembly language model training.

Evaluation Environment. The training of the assembly language
model and test cases generation are performed on a server with
Intel Core i7-7820X v8 CPU @ 3.60GHz, 64 GB of memory, and 2
NVIDIA GeForce GTX 1080 Ti GPUs, running on Debian 12. To
facilitate a paralleled evaluation process for the generated test cases,
we employed an additional server equipped with an AMD EPYC
7543 v128 CPU @ 2.80 GHz and a substantial 512 GB of memory,
running on Ubuntu 22.04.3 LTS.

5.1 RQ1: Context-based Test Case Generation

To address RQ1, we scrutinize LirTFuzz from three unique stand-
points. Initially, we evaluate the GPT model and other sequence-
based models, aiming to gauge the model’s ability to produce diverse
and high-quality test cases. Going further, we aim to ascertain if
alterations in context can notably affect the model’s quality and
diversity, thereby impacting the generation of high-quality test
cases. We thus implement varying block sizes to limit the model’s
access to contextual information to achieve this. Finally, we con-
duct a comprehensive experiment to evaluate how well the model
contributes to the final results. Both LirTFuzz and the baseline are
evaluated using three state-of-the-art binary lifters.

5.1.1 Evaluation with Other Sequence-based Models. To evaluate
the model’s ability to produce diverse and high-quality test cases,
we carefully chose two sequence-based models, LSTM and NMT,
effective at text generation tasks. We then compare these with the
GPT models, utilizing three standard and comprehensive metrics.

Other Sequences-based Models. Long Short-Term Memory (LSTM)
[22] is a variant of the recurrent neural network (RNN) designed
to address the vanishing and exploding gradients issue common in
conventional RNNs, thereby improving efficiency with longer se-
quences. Due to its ability to learn long-term dependencies, which
is crucial in text generation as the relevance of words often depends
on the context established by preceding words or sentences, LSTM
is often used in text generation tasks.

Neural Machine Translation (NMT) [2] is a type of sequence-
to-sequence models that use an RNN or a transformer network to
process the input sentence and generate the translated sentence.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

NMTs are especially useful in text generation tasks because they
can generate more fluent and natural-sounding text compared to
traditional rule-based or statistical methods.

Implementation. All models use default settings and parameters.
Meanwhile, all models are the same in batch size, similar in size,
trained with the same dataset, and adopt the same data processing
strategy, including tokenization. All models are still underfitting.

Metrics. Perplexity [24] is the standard metric in the language
model used to gauge how well a probability model predicts a sample.
Perplexity can reflect the diversity of a language model because
it essentially measures the uncertainty of a model in predicting
the next word in a sequence [48]. Thus, a lower perplexity score
indicates that the model has less uncertainty, meaning it can predict
the next word more accurately and have more diversity. Generally,
a perplexity value under 20 suggests that the model exhibits a high
degree of diversity [44].

BLEU (Bilingual Evaluation Understudy) [39] is a popular metric
used to evaluate the quality of machine-generated text by compar-
ing it to reference texts. A higher BLEU score indicates a higher
quality generation that is more similar to reference texts [30]. BLEU
score above 60 indicates that the model has very high quality [20].

Self-BLEU [56, 57] is a variant of the BLEU score that is used to
measure the diversity of the generated text. Instead of comparing
the generated text to a reference text, Self-BLEU compares each
generated sentence to all other generated sentences. A lower Self-
BLEU score indicates higher diversity, indicating less similarity
among generated sentences. Self-BLEU score below 30 denotes
moderate diversity in the model’s output [20].

Results. As the table 2 clearly illustrates, LSTM underperforms
in terms of the BLEU score, suggesting its inability to generate
high-quality test cases. NMT, on the other hand, scores low on the
Self-BLEU score, indicating its lack of capacity to generate highly
diverse test cases. Contrastingly, GPT excels over both LSTM and
NMT in the assembly generation task, displaying a low perplexity
of 15.0192 (less than 20) and Self-BLEU scores of 25.25 (less than
30), while simultaneously securing a superior BLEU score of 62.49
(greater than 60). Based on related NLP studies [20, 44, 48], these
findings indicate that our assembly language model is capable of
generating high-quality test cases with considerable diversity.

These findings align with previous studies in NLP (2, 35, 43, 44,
47, 51], which pinpoint that GPT outshines LSTM and NMT in
text-generation tasks. This superiority is primarily due to the GPT
model’s extensive context window, enabling it to preserve long-
term dependencies within the text. This capability proves beneficial
in generating text that is both coherent and contextually appro-
priate. We believe the fundamental similarity between assembly
code and natural language underpins this outcome. As a result, the
assembly and text generation tasks share essential characteristics,
allowing for the transfer of insights and techniques from NLP to
the generation of diversity and high-quality assembly code.

5.1.2 Evaluation with Different Contexts. To determine whether
altering the context can substantially boost the model’s quality
and diversity, thus enabling the creation of superior test cases,
we impose different block sizes to confine the model’s access to
contextual information.

Yutong Zhou et al.

Table 3: Evaluation against 3 state-of-the-art binary lifters

Dataset MeanDiff ‘ LiftFuzz

Test cases 97,487 | 1,000

|

|
\ # Lift | 94,025 (96.45%) | 1,000 (100%)
Mcsema | # Recompile | 93,654 (96.07%) | 1,000 (100%)
‘ # Inconsistencies ‘ 1 ‘ 5
\ # Lift | 44,913 (46.07%) | 996 (99.60%)
Revng | #Recompile | 29,460 (30.21%) | 867 (86.70%)
‘ # Inconsistencies ‘ 1 ‘ 5
\ # Lift | 49,322 (50.59%) | 993 (99.30%)
Retdec | #Recompile | 29383 (30.14%) | 924 (92.40%)
‘ # Inconsistencies ‘ 1 ‘ 16
Total found inconsistencies ‘ 3 ‘ 26
Context found inconsistencies ‘ 0 ‘ 11

Implementation. We have set five block sizes (10, 16, 32, 64, and
128) to limit the model’s access to contextual information. We start
with a block size of 10 to ensure the context includes at least one
complete instruction rather than an incomplete one. The maximum
block size is set to 128, which is the highest capacity supported by
the NVIDIA GeForce GTX 1080 Ti GPU. Simultaneously, all model
parameters remain consistent. All models are still underfitting.

Results. As depicted in Figure 7, with an increase in block size,
there is a gradual decrease in both perplexity and self-BLEU, indi-
cating a negative correlation. This suggests that the model has less
uncertainty and higher diversity, meaning it can predict the next to-
ken more accurately, and the generated instructions are less similar
to each other. On the other hand, the BLEU score shows a gradual
increase, implying a positive correlation. This indicates a higher
quality of generation that aligns more closely with reference texts.
All scores achieve a marginal effect when the block size reaches
128. These results demonstrate that expanding varying contexts
can significantly enhance the model’s quality and diversity, thus
facilitating it to generate high-quality test cases.

80 1 —m— Perplexity
—e— BLEU
70 1 —&— Self-BLEU

L
o
£ 50
[
o
& 40

30 1

20 1

20 40 60 80 100 120
Block_Size

Figure 7: Evaluation with Different Contexts.

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

5.1.3 Comparison Against MeanDiff. To assess whether LirTFuzz
can learn the interactions among instructions and to quantify the
model’s contribution to the final results, we evaluate both LirTFuzz
and the baseline using three state-of-the-art binary lifters.

Baseline. While there is prior work on binary lifter (see also Ta-
ble 1), AVBT [10] does not make their system publicly available, and
SVBL [12] cannot generate test cases since they utilize the existing
formal semantics of x86 instruction and LLVM IR for the binary
lifter validation. As a result, we use MeanDiff [27] as our baseline.

MeanDiff [27] checks the semantics equivalence of each instruc-
tion returned from a test case generator, a procedure akin to that
of LirTFuzz. As such, the test instructions generated by MeanDiff
serve as a suitable baseline for comparison when assessing the
performance of LirTFuzz. Nonetheless, MeanDiff only guarantees
the correctness of the instruction syntax and does not consider the
semantics of instructions or the interactions among them. This sim-
plifies the generation process and facilitates the generation of more
test instructions for a wide coverage, yet simultaneously produces
an excess of test instructions that are lack of the necessary running
environment. Thereby, test instructions generated by MeanDiff
cannot be directly executed. To execute these instructions, we clas-
sify these instructions based on both opcode type and operand type.
For instance, we group add al,@x0, add al, @x42, and add al,
oxff together, then use a template same as LIFTFuzz to initialize
and finalize the running environment. Subsequently, we compile
these grouped instructions into binary executable files.

Evaluation. During the same period, LirTFuzz produced 1,000
test cases while MeanDiff generated 97, 487. This discrepancy is be-
cause LIFTFuzz requires more computational power for prediction,
whereas MeanDiff generates test cases based on simple rules. To
ensure every test assembly instruction is compiled into binaries and
prevent the compilers from optimizing away the test instructions
that are useful in finding contextual bugs but may be meaningless
to compilers, we compile all test cases with the -00 parameter. Ad-
ditionally, all binary executable inputs contain debug information
to assist the disassembler in performing accurate disassembly.

We evaluate LiIrTFuzz and MeanDiff on three predominant and
mature binary lifters, RetDec (v4.0-317-ge59b1388) [1], McSema
(v3.0.26) [50], and Revng [45]*. McSema, Revng, and RetDec are well-
established and widely utilized binary lifters that have undergone
rigorous testing and enjoy a strong reputation in the community.
Their GitHub repositories indicate a history of approximately seven
years, during which their developers have actively maintained them.
As aresult, it is challenging to find any inconsistency from them.

Results. As shown in Table 3, compared to MeanDiff, LirtFuzz
generates a higher percentage of test cases that the binary lifter
can process, and a larger portion of the lifted IRs can be recompiled
back into binary executables, which is especially evident in the val-
idation of Revng and RetDec. This is primarily because MeanDiff
evaluates instructions individually and focuses on the semantic
equivalence of a single instruction, thereby generating testing in-
structions independently. Consequently, even though the binary
lifter can handle a single binary instruction, it encounters diffi-
culties when processing the testing instruction within a binary

4Revng does not have accurate version information. We downloaded it in July 2023.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

executable file, which does not comply with a normal program’s
basic structure and semantics. Thereby, the binary lifter deals with
the test input as an exception and generates IRs containing either
pseudocode or statements that have not been implemented, mak-
ing it unfeasible for recompilation. Since lifting and recompiling
are both time-consuming and resource-intensive, considering rela-
tionships among instructions allows LirTFuzz to exhibit superior
performance efficiency compared to MeanDiff.

While MeanDiff can generate a large number of test cases, they
are not context-aware but simply a combination of single instruc-
tions. As a result, despite its extensive test case production, MeanDiff
only identifies one inconsistency each in McSema, Revng, and RetDec.
None is triggered by interactions among instructions. Notably, LIFT-
Fuzz can also detect these inconsistencies. Contrarily, despite gen-
erating a mere 1/1000 of the test cases produced by MeanDiff, LirT-
Fuzz obtained 26 unique inconsistencies. Interestingly, 11 of these
inconsistencies are the results of interactions among instructions.
These inconsistencies can lead to incorrect execution paths or pro-
gram crashes, which could disrupt subsequent security analysis [32].
The result shows that simply expanding the diversity and volume of
instructions won’t necessarily boost test coverage or uncover more
inconsistencies; it could only diminish efficiency. Besides, to our
surprise, we have identified inconsistencies in frequently employed
instructions. Next, we demonstrate several representative examples
to offer a succinct introduction and conduct a thorough analysis.

RQ1 Answer: LirtFuzz efficiently learns instruction in-
teractions, generating high-quality and diverse test cases
and outperforming MeanDiff. It uses only 1/1000 of
MeanDiff’s test cases to identify 26 inconsistencies, a 767%
increase compared to MeanDiff’s findings.

5.2 RQ2:Inconsistencies Among Instructions

This section provides a case where LirTFuzz effectively shows
its ability to generate test inputs that challenge the binary lifter and
identify previously unknown inconsistencies. The case includes
only a few straightforward and commonly used instructions.

Case 1: Inconsistency Among jae Instruction. The jae instruc-
tion performs a jump operation to the target instruction specified
by the destination operand if the carry flag (CF) is zero. If the con-
dition is not satisfied, the jump is not performed, and execution
follows the instruction following the jae instruction [23]. The pro-
gram counter increments to execute the next instruction. As shown
in Listing 4, LIFTFUZzZ generates several scenarios to verify whether
the binary lifter can correctly translate jae instruction to IRs. Fac-
ing the same jae instruction respectively located in Line 4 and Line
6, RetDec translates it into two completely different IRs. The jae
instruction, highlighted in yellow, located at Line 4, is translated
into the IRs from Line 18 to Line 21, which is consistent with the
actual instruction behavior. The jae instruction highlighted in red,
located at Line 6, is translated into the IRs from Line 23 to Line 24.
The function of these three lines is to return an undefined int64,
which is inconsistent with the actual instruction behavior.

After further analysis, we find that RetDec identified the jae
instruction at Line 4 and successfully translated the instruction into

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Yutong Zhou et al.

/* Assembly codes */

2| 0x4004fb: mov 0x400505, %rcx
5| 0x400502: 00

0x400503: jae 0x400505; <Block_1>
5| @x400505 <Block_1>:
;| 0x400505: jae 0x400513; <Block_2>

5| 0x400513 <Block_2>:

9] 0x400513: jae 0x400520; <Block_3>

12| /* LLVM IR */

13| ; 0x4004fb

14| store volatile i64 4195579, i64x @_asm_program_counter
15| %27 = load i64, i64% inttoptr (i64 4195589 to i64%)

16| store 164 %27, i64* @rcx

17| ; 0x400503

15| store volatile i64 4195587, i64* _asm_program_counter

19| %28 = load i1, ilx cf

20| %29 = icmp eq il

br i1 %29, label %dec_label_pc_400505, label %dec_label_pc_400505
; 0x400505

3| dec_label_pc_400505:

| ret i64 under

/* Assembly codes */
2| 0x4004f4 <Block_0>:

3| 0x4004f4: neg %eax
1| 0x4004f6: sbb %eax, %eax
5| 0x400478: movslg ‘%eax, %rdx

7 /% LLWM IR %/

5| ; 0x4004f6

9| store volatile 164 4195574, i64* @_asm_program_counter
10| %19 = load i64, i64* Q@rax

11| %20 trunc i64 %19 to i32

12] %21 load i64, i64* @rax

13| %22 trunc i64 %21 to 132

14| %23 load i1, i1* @cf

15 %24 zext i1 %23 to i32
16| %25 add i32 %22, %24

17| %27 and i32 %20, 15

18| %28 and i32 %25, 15

19| %29 sub 132 %27, %28

20| %30
21| %31

load i1, i1*x @cf
zext i1 %30 to i32

2| %32 add 132 %29, %31

3| %33 icmp ugt i32 %32, 15
4| store i1 %33, i1x @Qaz

Listing 4: Casel: RetDec erroneously interprets Line 6 as data,
leading to an inaccurate translation.

the corresponding IRs. On the contrary, the disassembly result gen-
erated by RetDec indicates that RetDec recognized the instruction
at Line 6 as data inside the code section. Hence, in this case, RetDec
did not translate Line 6 as jae instruction.

Nonetheless, the issue has not been fully resolved. As shown
at Line 21, RetDec utilizes a br instruction, redirecting control
flow to two basic blocks [42]. Give that two parameters of the br
instruction are both dec_label_pc_0x400505, the symbol used
by RetDec to represent the IR branch of the instruction located
at 0x400505, the address of the next instruction and the target
instruction are the same, 0x400505. Consequently, whether the
condition is to jump or not, @x400505 will ultimately be executed.
This implies that 9x400505 must be an instruction, not data. And
the label dec_label_pc_0x400505 at Line 23 is the entry point to
IRs of the instruction at address 9x400505. However, the transla-
tion results of Line 4 and Line 6 collectively suggest that RetDec
possesses insufficient knowledge of disassembly to recognize that
the address 0x400505 corresponds to an instruction rather than
data. Thereby, RetDec has made a contradictory translation.

As mentioned in Section 5.1, all binary executables in our ex-
periment contain debug information to ensure the accuracy of
disassembly. Meanwhile, to eliminate the interference from the
disassembler, we input the binary executable into Capstone [9],
the disassembler used by RetDec, to test whether Capstone can
successfully correctly disassemble all instructions. We observed
that Capstone correctly disassembled all instructions of the test
binary executable, including the jae instruction shown in Listing 4.
This shows that the root cause of the problem is not the limitation
of the underlying disassembler functionality but RetDec’s failure
to handle the interaction among instructions, leading to incorrectly
translating an instruction into data and code simultaneously.

We also found similar situations with many other common in-
structions, which supports our insight that verifying the correctness
of every single instruction in isolation is far away from the original

Listing 5: Case2: RetDec unfaithfully translates AF flag during
the lifting of Line 4, sbb instruction.

intention and primary purpose of binary lifters. Complex interac-
tions exist among instructions, preventing the binary lifter from
correctly translating each instruction.

RQ2 Answer: LirTFuzz discovered that the correct trans-
lation of a single instruction in one context does not neces-
sarily guarantee its accurate translation in other different
code scenarios.

5.3 RQ3: Case Studies on Inconsistencies Inside
Instructions

This section provides two examples to illustrate how LirTFuzz
utilizes its understanding of instruction interactions to validate
whether the binary lifter can accurately utilize and propagate the
effects within the instruction. Case 2 demonstrates how the incon-
sistency can lead to an instruction sending an incorrect control
signal to the following instructions. Case 3 demonstrates how the
inconsistency can result in an instruction’s inability to handle the
signal left by the previous instruction correctly.

Case 2: Inconsistency Inside sbb Instruction. The sbb instruc-
tion is to add the source operand and CF, and subtract the result from
the destination operand. The OF, SF, ZF, AF, and CF are set according
to the result [23]. As shown in Listing 5, LIrTFUzZ constructs a test
case containing the sbb instruction and finds inconsistencies with
the corresponding instruction in the emulation-style IRs generated
by RetDec. To be precise, it is about calculating the AF. The AF
(Auxiliary Carry) flag is a flag in x86 CPUs that indicates whether
there was a carry-out or borrow into the least significant 4 bits
during arithmetic operations [23].

Here is an overview of how RetDec calculates the AF flag in
the IRs of the sbb instruction. RetDec uses az to represent AF.
From Line 8 to Line 24, RetDec takes out the value of eax and the

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

value of eax+CF. Next, RetDec performs a subtraction operation
on the lower four bits of eax and the lower four bits of eax+CF.
Then, RetDec adds the value of CF to the result and performs an
unsigned greater than operation with 15. Finally, RetDec writes the
final result into AF. Since in Line 23, %32 and 15 perform unsigned
greater than calculations, %33 will only become true when %32 is
greater than 15 or less than 0. Therefore, RetDec will only set AF
to 1 when the least significant 4 bits of eax is 0xf. However, in a
real CPU, if CF is 1 after this instruction is executed, AF will be set
to 1. Otherwise, AF will be 0. Hence, there is a huge inconsistency
between the emulation-style IRs and the corresponding instruction.

The above is the case when the two operands are equal. When
the first and second operands are different, the operation of IRs
generated by RetDec is also inconsistent with the real instruction
behavior. After we studied the source code of RetDec, we summa-
rized this as a programming bug, since we found that there exist
two programming problems. The first is that eax should intercept
the lower four bits before adding it to CF, so that the result can
be retained in int32 without losing. Another problem is that the
operations on Line 20 to Line 22 are redundant. To sum it up, an
operation is repeated in an error location.

Nevertheless, this does not solve the problem. After further re-
search and conducting many tests on the physical CPU, we find
that sbb instruction will set AF due to two situations. Remember
that the sbb instruction performs addition of the source operand
and CF, followed by subtraction of the result from the destination
operand. There are two scenarios to consider: one arises from the
carry generated after adding the lower four bits of eax to CF, and
the other arises from the borrow obtained by subtracting eax+CF
from eax. RetDec only considers the borrow situation and ignores
the carry situation. Thereby, a simple modification of source code
cannot address the issue and RetDec requires a re-implementation
of the sbb instruction.

Case 3: Inconsistency Inside imul Instruction. The imul in-
struction is to perform a signed multiplication of two operands. As
shown in Listing 6, LIFTFUzz constructs a test case that includes an
instruction at Line 6, imul %rax, %rdx, following an instruction at
Line 4, add %r11, %ecx, and inputs it to McSema. The IRs generated
by McSema for the instruction, imul %rax, %rdx, specifically lines
10 to 19, are responsible for setting the AF, ZF, PF, and SF flags. In
this case, McSema uses the variables @AF_2069_2ba8480 to repre-
sent AF, @ZF_2071_2ba8480 to represent ZF, @PF_2067_2ba8480 to
represent PF, and @SF_2073_2ba8480 to represent SF. In summary,
the effect of these lines is to reset AF and ZF to zero, and adjust PF
and SF based on the calculation results. Unfortunately, an incon-
sistency arises here. When the imul instruction is executed on a
real CPU, it does not modify these four flags in the same manner
but instead preserves the status set by the previous instruction add
%r11, %ecx at Line 4.

The above two examples demonstrate that inconsistency causes
the binary lifter to incorrectly set the eflags register, an important
control and status register containing multiple flags that record the
valuable information about the outcome of previous instructions
and control the behavior of subsequent instructions. These flags
are crucial for program execution, condition checking, and control
flow. They allow the CPU to make decisions based on the outcome

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

/* Assembly codes */
2| @x400504 <Block_1>:

0x400508: add

%r11d, %ecx
5| 0x40050b <Block_2>:

6| @x40050b: imul %rax, %rdx

9 /* LLWVM IR %/

10| %85 call i32 @llvm.ctpop.i32(i32 ...)

11| %86 trunc i32 %85 to i8

12| %87 and i8 %86, 1

13| %88 xor i8 %87, 1

14| store 18 %88, i8* @PF_2067_2ba8480

15| store i8 @, i8x @AF_2069_2ba8480

16| store 18 @, i8% @ZF_2071_2ba8480

17| %res_trunc.lobit.i.i69 = lshr i64 %retval.sroa.0.0.
extract.trunc.i.i58, 63

15| %89 = trunc i64 %res_trunc.lobit.i.i69 to 1i8
19| store i8 %89, i8x @SF_2073_2ba8480

Listing 6: Case3: McSema inaccurately translates the PF, AF, ZF
and SF flags in the lifting of Line 6,

of previous operations, handle errors, and control program flow
through conditional jumps and loops.

RQ3 Answer: LirTFuzz discovered that inconsistencies
within instructions can result in incorrect calculations and
the propagation of effects among instructions.

5.4 RQ4: Root Causes of Inconsistencies

This section summarizes the inconsistencies found by LirTFuzz
and the root causes of these inconsistencies. First, binary lifting is
not merely a process of converting instructions from disassembly
results into IRs on an instruction-by-instruction basis. Since a sig-
nificant amount of high-level information, such as variable names,
data types, and control structures, is lost during the compilation
process, reconstructing the high-level structure and semantics of
the original program poses a complex and formidable challenge.
As demonstrated in Case 1, the binary lifter might encounter con-
flicting disassembly information, necessitating a crafted design to
sift out incorrect interference information. Also, the binary lifter
should filter in the correct information and employ IRs to restore
and re-articulate the original structure of the program.

Second, instruction set manuals for modern processors are often
incredibly detailed and extensive. As illustrated in Case 2, under-
standing and implementing support for every single instruction
can be a daunting task. This is further complicated because differ-
ent processors, even within the same family, may have different
versions of instructions.

Third, the semantics of some instructions might not be clearly
defined in the manual, or the manual might be ambiguous or have
errors. As demonstrated in Case 3, this can lead to uncertainty about
how to lift such instructions correctly. Furthermore, the behavior
of some instructions can depend on the specific processor model,
adding another layer of complexity.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

RQ4 Answer: LirTFuzz discovered that the root causes
are attributed to the lack of high-level information for pro-
gram structure recovery. Additionally, the complexity of
the modern instruction set manual and unclear definitions
for certain semantics contribute to the challenges faced.

6 DISCUSSION

In this section, we will address certain limitations of our work and
explore potential avenues for future research.

Alternative Assembly Language Model. Currently, we imple-
ment LirTFuzz with minGPT [26]. This reliance on minGPT re-
stricts LirTFuzz’s ability to fully comprehend the dataset and cap-
ture the intricate interactions among instructions. Consequently,
LirTFuzz is unable to fully unleash its potential in generating highly
efficient test cases. This limitation is acknowledged in our current
work. However, despite the constraints imposed by hardware condi-
tions and the model, LirTFuzz has successfully identified issues in
three well-established binary lifters and has achieved commendable
results. This outcome validates the correctness of our insights and
the feasibility of our methodology. Hence, LirTFuzz’s efficacy does
not solely rely on large models, as even with smaller models, it can
still yield favorable outcomes. In the future, we aim to explore the
migration of LirTFuzz to the full-size GPT for testing purposes,
and theoretically, the performance should be further improved.

Extend LirTFuzz to other lifters, IRs, ISAs. LirtFuzz currently
centers around LLVM IR and x86-64. The test input generated by
LirTFuzz can be directly applied to other binary lifters that utilize
LLVM IR and operate on x86-64 because the test input is the binary
executable, ensuring compatibility with any such binary lifters.
Furthermore, the final verification process depends on the runtime
information provided by the CPU, which is independent of the
binary lifter itself. Meanwhile, expanding our work to encompass
additional IRs and ISAs would not only enhance the dependability
of binary lifters but also alleviate the developers’ workload. For
non-LLVM IRs, several instrumentations are needed to extract the
runtime information if the lifted IR is recompilable; otherwise, an
additional runtime module is required to make the lifted IR recom-
pilable. For other ISAs, LirTFuzz adapts by learning from relevant
datasets and incorporates hallucination for fuzzing input mutations.
Then, LirTFuzz can generate corresponding test cases for valida-
tion. Consequently, LirTFuzz exhibits high adaptability. We believe
that with minor modifications to the IR Integrator, LirTFuzz can
be quickly employed by binary lifters utilizing alternative IRs.

Integrate LirTFuzz with MeanDiff MeanDiff can substitute ran-
domly generated test instructions with those from LirTFuzz to
validate the binary lifters. Nonetheless, MeanDiff’s limitation lies
in detecting inconsistencies that are caused by inter-instruction
interactions. This is due to MeanDiff processes and evaluates in-
structions individually, thereby missing out on the information
shared between instructions.

7 RELATED WORKS

Past attempts to validate binary lifters can be generally divided into
two main strategies: symbolic execution-based and testing-based.

Yutong Zhou et al.

7.1 Symbolic Execution-Based Approach

Dasgupta et al. [12] utilize formal semantics of LLVM and the x86
instruction to perform symbolic execution and differential analysis,
emphasizing wide coverage. Additionally, they propose a program-
level validation using a combination of validated instructions.

MeanDiff [27] propose N-version IR testing to validate three
binary lifters: BAP [8], BINSEC [3], and PyVEX [46]. Their approach
involves converting the different IRs generated by these three binary
lifters for the same instruction into unified IR representations. These
unified IR representations are then subjected to symbolic execution,
which generates symbolic summaries used for differential analysis.

Reopt-veg [21] is proposed to specifically verify Reopt [17].
Reopt-vcg takes annotations that establish the relationship between
LLVM functions and addresses in the executable, generating proof
obligations in the SMT-LIB. This work demands significant human
resources and is prone to errors.

7.2 Testing-Based Approach

Chen et al. [10] enable the translation of ARM programs into x86
programs through a binary lifter. Then, they verify the accuracy
of the binary lifter by executing both the original program and the
translated program, and comparing the architectural states after
each instruction. The evaluation of the validator is conducted using
the ARM code compiled from EEMBC1.1 [16]. However, EEMBC1.1
was not designed to validate the binary lifter, resulting in the bi-
nary lifter not being efficiently verified. Unlike them, LirTFuzz can
leverage interactions among instructions to generate specific test
inputs that are utilized for testing the binary lifter.

Martignoni et al. [38] validates the "buggier and less complete”
Lo-Fi emulator [5] by generating high-fidelity test inputs using
symbolic execution. These test inputs are created based on the in-
struction semantics of a "faithful and more complete" Hi-Fi emulator
[29]. They execute each test instruction twice, once on real hard-
ware and then on the Lo-Fi emulator. By comparing the outputs of
the Lo-Fi emulator with the outputs of the Hi-Fi emulator for these
test inputs, they can identify and address discrepancies or bugs.
Indeed, using the test input generated by the Hi-Fi emulator may
not efficiently uncover potential problems in the Lo-Fi emulator.
Therefore, while this approach provides some level of validation, it
may not be as thorough or effective in identifying all possible issues.
Earlier, Martignoni et al. [36, 37] propose hardware-cosimulation
based testing on QEMU [5] and Bochs [29]. They compared the
machine state between the physical CPU and the emulator after ex-
ecuting randomly generated test inputs to discover inconsistencies.
Due to the random generation of all test instructions, the efficiency
of generating test instructions and triggering binary lifter problems
is significantly constrained.

Our work. Prior works all assumed that the binary lifter processes
instructions without taking contexts into account, consistently gen-
erating identical IR for each identical instruction. This results in
each instruction being validated in isolation, overlooking the po-
tential interactions among instructions. And we have discovered
that this assumption is incorrect. According to our observation, the
binary lifter processes the same instruction differently due to differ-
ent contexts. To fill this gap, LirTFuzz first learns the interactions

LirtFuzz: Validating Binary Lifters through Context-aware Fuzzing with GPT

among instructions and generates test inputs to verify whether the
binary lifter can handle complex interactions among instructions.

8 CONCLUSION

In this paper, we introduce LirTFuzz, a novel framework that lever-
ages instruction context-aware fuzzing to validate binary lifters.
Contrary to existing validation methods that predominantly fo-
cus on isolated instructions, neglecting the interactions among
instructions, LirTFuzz employs an assembly language model to
comprehend and learn from the interactions among instructions,
thereby generating test cases with that knowledge. We evaluate
LirtFuzz with against three predominant binary lifters, McSema,
Revng, and RetDec. In total, LirTFuzz discovers 26 inconsistencies,
including a previously uncovered category.

9 ACKNOWLEDGEMENT

We want to thank our anonymous reviewers for their valuable com-
ments. This work was supported in part by National Key Research &
Development Project of China (Grant No. 2019YFB1804400), Hong
Kong S.AR. Research Grants Council (RGC) General Research
Fund No. 14209720, and research fund (TA2217345) from Alipay
(Hangzhou) Information Technology Co., Ltd. Jiongyi Chen was
supported by the Natural Science Foundation of China (Grant No.
62302508) and Research Funding of NUDT (Grant No. ZK22-53).

REFERENCES

[1] Avast Threat Labs. Accessed: September 2023. Avast. https://github.com/avast/r
etdec.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR 1409.0473 (2014).
[3] Sébastien Bardin, Philippe Herrmann, Jérome Leroux, Olivier Ly, Renaud Tabary,
et al. 2011. The BINCOA Framework for Binary Code Analysis. In CAV. 165-170.
[4] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al. 2018. Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics. In NDSS’2018.
[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX,
Vol. 41. 10-5555.
[6] Derek Bruening. 2004. Efficient, transparent, and comprehensive runtime code
manipulation. Ph.D. Dissertation. Massachusetts Institute of Technology, USA.
[7] Derek Bruening, Timothy Garnett, and Saman P. Amarasinghe. 2003. An Infras-
tructure for Adaptive Dynamic Optimization. In CGO. IEEE, 265-275.
[8] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In CAV. Springer, 463-469.
[9] Capstone. Accessed: October 2023. http://www.capstone-engine.org/.
[10] Jiunn-Yeu Chen, Wuu Yang, Bor-Yeh Shen, et al. 2015. Automatic validation for
binary translation. Computer Languages, Systems & Structures 43 (2015), 96-115.
Cristina Cifuentes and Mike Van Emmerik. 2000. UQBT: Adaptive Binary Trans-
lation at Low Cost. Computer 33, 3 (2000), 60-66.
[12] Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S. Adve, et al.
2020. Scalable validation of binary lifters. In PLDI 655-671.
Sandeep Dasgupta, Daejun Park, et al. 2019. A complete formal semantics of
x86-64 user-level instruction set architecture. In PLDI. 1133-1148.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).
Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In SP. IEEE, 472-489.
[16] EEMBC. Accessed: October 2023. EEMBC. https://www.eembc.org/techlit/.
[17] GaloisInc. Accessed: October 2023. Reopt. https://github.com/GaloisInc/reopt.
[18] GNU. Accessed: October 2023. The GNU C Library (glibc). https://www.gnu.or
g/software/libc/documentation.html.
[19] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In NDSS, Vol. 8. 151-166.

(11

[13

[14

[15

[20] Google Could. Accessed: April 2024. Evaluating models. https://cloud.google.c
om/translate/automl/docs/evaluate.
[21] Joe Hendrix, Guannan Wei, and Simon Winwood. 2019. Towards verified binary

raising. In Workshop on Instruction Set Architecture Specification 2019, Vol. 6.

[22

(23]

[24

IS
S

S W
)

&
=)

'S
o

=
&

[49]

o
=

o
o

a5
=

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Intel. Accessed: September 2023. Intel® 64 and IA-32 Architectures Software
Developer Manuals. https://www.intel.com/content/www/us/en/developer/arti
cles/technical/intel-sdm.html.

Frederick Jelinek, Robert L. Mercer, Lalit R. Bahl, and Janet M. Baker. 1977.
Perplexity—a measure of the difficulty of speech recognition tasks. Journal of
the Acoustical Society of America 62 (1977).

Xin Jin, Kexin Pei, Jun Yeon Won, and Zhigiang Lin. 2022. SymLM: Predicting
Function Names in Stripped Binaries via Context-Sensitive Execution-Aware
Code Embeddings. In CCS. 1631-1645.

Andrej Karpathy. Accessed: October 2023. minGPT. https://github.com/karpath
y/minGPT/.

Soomin Kim, Markus Faerevaag, Minkyu Jung, Seungil Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. 2017. Testing intermediate representations for
binary analysis. In ASE. 353-364.

Michael Laurenzano, Mustafa M. Tikir, Laura Carrington, et al. 2010. PEBIL:
Efficient static binary instrumentation for Linux. In ISPASS. IEEE, 175-183.
Kevin P Lawton. 1996. Bochs: A portable pc emulator for unix/x. Linux Journal
1996, 29es (1996), 7-es.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2015. A
diversity-promoting objective function for neural conversation models. arXiv
preprint arXiv:1510.03055 (2015).

Xuezixiang Li, Yu Qu, and Heng Yin. 2021. Palmtree: Learning an assembly
language model for instruction embedding. In CCS. 3236-3251.

Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. 2022. Sok: Demystifying
binary lifters through the lens of downstream applications. In SP. 1100-1119.
Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In ICLR. https://openreview.net/forum?id=Bkg6RiCqY7

Chi-Keung Luk, Robert S. Cohn, Robert Muth, et al. 2005. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI 190-200.

Ben Mann, N Ryder, M Subbiah,] Kaplan, P Dhariwal, A Neelakantan, et al. 2020.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020).
Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. Testing system virtual machines. In ISSTA. 171-182.

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU emulators. In ISSTA. 261-272.

Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, et al. 2010. N-
version disassembly: differential testing of x86 disassemblers. In ISSTA. 265-274.
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In ACL. 311-318.
Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, et al.
2021. Stateformer: Fine-grained type recovery from binaries using generative
state modeling. In ESEC/FSE 21. 690-702.

Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020. Trex:
Learning execution semantics from micro-traces for binary similarity. arXiv
preprint arXiv:2012.08680 (2020).

LLVM Project. Accessed: September 2023. LLVM Language Reference Manual.
https://llvm.org/docs/LangRef html.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. OpenAI (2018).
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, et al. 2019.
Language models are unsupervised multitask learners. OpenAlI blog (2019).
rev.ng. Accessed: September 2023. Revng. https://github.com/revng/revng.
Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In NDSS’22nd.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In NeurIPS. 3104-3112.

Guy Tevet and Jonathan Berant. 2020. Evaluating the evaluation of diversity in
natural language generation. arXiv preprint arXiv:2004.02990 (2020).

Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM 27, 8 (1984),
761-763. https://doi.org/10.1145/358198.358210

Trail of Bits research team. Accessed: September 2023. Mcsema. https://github.c
om/lifting-bits/mcsema.

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems. 5998—6008.

Vector 35. Accessed: May 2024. Binary Ninja. https://binary.ninja/.

Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable disassembling.
In USENIX. 627-642.

Tao Wang, Jun Liu, Xiaoning Zhang, Kehuan Zhang, et al. 2016. XcodeGhost: A
Large-Scale Apple App Store Malware. IEEE Access 4 (2016), 5183-5191.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In PLDI. 283-294.

Xinyuan Zhang, Yi Yang, Siyang Yuan, et al. 2019. Syntax-infused variational
autoencoder for text generation. arXiv preprint arXiv:1906.02181 (2019).
Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, et al. 2018. Texygen:
A benchmarking platform for text generation models. In SIGIR. 1097-1100.

https://github.com/avast/retdec
https://github.com/avast/retdec
http://www.capstone-engine.org/
https://www.eembc.org/techlit/
https://github.com/GaloisInc/reopt
https://www.gnu.org/software/libc/documentation.html
https://www.gnu.org/software/libc/documentation.html
https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/karpathy/minGPT/
https://github.com/karpathy/minGPT/
https://openreview.net/forum?id=Bkg6RiCqY7
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://github.com/revng/revng
https://doi.org/10.1145/358198.358210
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://binary.ninja/

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Overview
	3.1 Problem Definition
	3.2 A Motivation Example
	3.3 Challenges
	3.4 Prior Efforts and Our Insights
	3.5 Overview

	4 Design of LiftFuzz
	4.1 Test Case Generator
	4.2 IR Integrator
	4.3 Validator

	5 Evaluation
	5.1 RQ1: Context-based Test Case Generation
	5.2 RQ2: Inconsistencies Among Instructions
	5.3 RQ3: Case Studies on Inconsistencies Inside Instructions
	5.4 RQ4: Root Causes of Inconsistencies

	6 Discussion
	7 Related Works
	7.1 Symbolic Execution-Based Approach
	7.2 Testing-Based Approach

	8 Conclusion
	9 Acknowledgement
	References

