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Abstract

Program options are ubiquitous and serve as a fundamental mecha-
nism for configuring and customizing software behaviors. Given
their widespread use, testing program options becomes essential to
ensure that the software behaves as expected across various config-
urations. Existing option-aware fuzzers either mutate options as
if they were standard program inputs or employ NLP techniques
to deduce relationships among options from the documentation.
However, there has not been a whitebox approach that generates
option combinations by capturing the inherent execution logic of
the program.

This paper presents OSmart, a whitebox approach designed to
systematically extract program options and effective option com-
binations that precisely encapsulate the intrinsic execution logic
of the program, incorporating both data dependency and control
dependency. OSmart successfully inferred 12,560 option combi-
nations from 56 programs. Additionally, OSmart uncovered that
more than 67% of evaluated programs have undocumented options.
By integrated with AFL++, OSmart discovered 40.3% more paths,
which led to the detection of 51 new bugs and the assignment of
18 CVE IDs. Finally, we also compared OSmart with four state-
of-the-art option-aware fuzzers on a public benchmark and our
tool achieved higher line coverage in 66.7% (20/30) of the evaluated
programs.
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1 Introduction

Fuzzing has been yielding promising results in identifying security
vulnerabilities by exploring program paths and triggering crashes.
While the fuzzing tools typically pursue coverage-driven strategies,
they often employ a fixed set of program options that specify certain
runtime program behaviors and result in biased execution logic.
This is particularly notable when the programs are provided with
abundant program options. As an example, nasm [35] accepts 44
options that can drive users to different functionalities.

On the basis of existing fuzzing frameworks, option-aware fuzzing
provides varied option combinations and explores program paths
associated with different options. Its objective lies in strategically
combining options by accurately capturing the dependency among
them, without exhaustively enumerating all possible combinations.
Whilemaintaining amanageable number of test cases during fuzzing,
awareness of program options could enable effective navigation to
more diverse execution paths.

In order to achieve option-aware fuzzing, several studies have
been presented to generate option combinations [2, 22, 28, 49,
52, 53]. One involves constructing option dependency by observ-
ing the differences in execution paths under different option con-
figurations [28]. AFL adopts the most straightforward solution
that indiscriminately mutates program options and program in-
puts [2, 22]. CrFuzz tries to enumerate all documented options
and their combinations, which unavoidably suffer combination ex-
plosion problems in the presence of tens or hundreds of program
options [45]. ConfigFuzz mutates options and input simultaneously
based on option relationships extracted from documents manu-
ally [52, 53]. CarpetFuzz [49] is the first work adopting NLP-based
techniques [8, 18, 36] to identify the potential relationships between
options. So far, option-aware fuzzing has not been accomplished in
a whitebox manner. Existing solutions all fail to precisely model the
option dependency by capturing the intrinsic characteristics from the
program itself, leaving a large input space for option combinations.
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In this paper, we present OSmart, a whitebox approach to sys-
tematically extract valid options and effective program combina-
tions based on precise data-dependency and control-dependency
analysis. Firstly, we use heuristic rules to precisely extract program
options and their affected variables as the sources of dependency
analysis. Then, to generate effective option combinations that ac-
curately encapsulate program execution logic, we perform a fine-
grained inter-procedural analysis on a new graph-based program
representation, Option Impact Graph. Additionally, we take steps
on option propagation and option combining, such as decompos-
ing the conditional statements, tracking the dependencies between
global and structure variables, and applying the Cartesian product
to ensure more precise combinations, which mitigates the combi-
nation explosion problem. In the end, the option combinations are
integrated into fuzzers with two mutation strategies.

We implemented a prototype called OSmart and evaluated it on
56 programs. OSmart successfully inferred 12,560 effective option
combinations and uncovered that more than 67% of evaluated pro-
grams have undocumented options. We also evaluated OSmart in
terms of path coverage by integrating OSmart into AFL++. The re-
sults show that OSmart discovered 40.3% more paths than AFL++,
which led to the detection of 51 new bugs and the assignment
of 18 CVE IDs. Compared with four state-of-the-art option-aware
fuzzers on a public benchmark, OSmart outperformed 66.7% (20/30)
programs in line coverage.

In summary, the main contributions of this work include:
• New Perspective. To the best of our knowledge, this paper
presents the first whitebox approach to extract effective op-
tion combinations that converge dependencies to achieve
option-aware fuzzing.

• New Techniques. We present several new techniques in
the paper, decomposing option parsing on AST, fine-grained
inter-procedural flow analysis, and sound option combina-
tion methods, which are operated on a new graph-based
program representation called option impact graph.

• Implementation and Evaluation. We implemented a pro-
totype system, OSmart, and evaluated it on 56 real-world
programs. The evaluation results demonstrated the efficiency
and effectiveness of our methods. We will release the source
code of our prototype tool at https://github.com/osmart-
source/osmartsource.

Responsible Disclosure: When we found the bugs, we imme-
diately reported them to the developers. We provided root cause
analysis for some vulnerabilities as well, so that the developers
could fix them faster. At the time of this writing, 22 bugs have been
fixed.

2 Background

In this section, we explain the concepts used in this paper with a
code example, illustrate why existing approaches fail, and give the
problem scope of this research.

2.1 Preliminaries

In Figure 1, the demo code contains three functions: help-function
listing the documented option, sum-function calculating the sum-
mation of two variables, and main-function presenting the option

1. void help() {
2. //Documented Options
3. printf("-a: set debug flag and string name");
4. printf("-t: add delta length");
5. }
6. int sum(int x, int y) {
7. return x+y;
8. }
9. void main(int argc, char** argv) {
10. char name[2048], fileName[1024];
11. int len, flag=0, doSum=0, delta=0;
12. //Option Parsing
13. while ((c=getopt(argc, argv, "a:st:"))!=-1) {
14. switch (c) {
15. case ’a’:
16. flag = 1;
17. strncpy(name,optarg,2048);
18. break;
19. case ’s’: /*Undocumented Option!*/
20. doSum = 1;
21. break;
22. case ’t’:
23. delta = atoi(optarg);
24. break;
25. default:
26. help();
27. }
28. }
29. //Option Impacts
30. if (flag) {
31. len = sizeof(fileName);
32. if (doSum) {
33. /*Integer Overflow with [-a, -s, -t]!*/
34. len = sum(len, delta);
35. }
36. /*Buffer Overflow with [-a, -s, -t]!*/
37. snprintf(fileName, len, "%s", name);
38. }
39. }

Figure 1: Motivating Example.

parsing statements and option impact areas. The core concepts are
given below:

• Documented Options (DOs) and Undocumented Op-

tions (UOs). In Lines 12-28, the program accepts three op-
tions, “-a”, “-s”, and “-t”. Specifically, programmers construct
a while-loop structure containing a switch-case sub-structure
to pick an option through argv by the getopt-function [13].
Here, we refer to the options as documented options, e.g.,
“-a” and “-t”, listed in the help-function. However, for some
specific reasons (e.g., internal testing, explained by the devel-
opers [31]), the option “-s” is missed in help-function, and
we refer to it as an undocumented option.

• Option Types (OT). First, for the options owning option
values, we classify them into two types: numeric and string.
Specifically, in our example, we say “-a” is a string option
as a strncpy() is used to accept its option value optarg in
Line 17. Second, for an option having no option value, in this
work, we say its type is 𝜀, e.g., the “-s”. Actually, identifying
the option types can efficiently facilitate the fuzzing proce-
dure as it can reasonably reduce the searching spaces by
providing proper initialization values and selecting the right
mutation strategy. Note that while most existing works man-
ually confirm the option types by reading the documents, we
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Table 1: A Brief Comparison with Existing Works.

Existing

Works

Option

Extract

Option

Grouping

Documented

Option

Undocumented

Option

Option

Type

Option

Impacts

Option

Group

Bugs

AFL++-argv* [22] generation-based generation-based ✓✗ ✓✗ ✗ ✗ ✓✗ ✓✗

CrFuzz [45] document-based enumeration ✓ ✗ Manual ✗ ✓✗ ✗

POWER [28] document-based random ✓ ✗ Manual ✗ ✓✗ ✗

ConfigFuzz [52, 53] document-based grammar-based ✓ ✗ Manual ✗ ✓✗ ✗

CarpetFuzz [49] document-based NLP-based ✓ ✗ Manual ✗ ✓✗ ✗

OSmart code-based impact-based ✓ ✓ ✓ ✓ ✓ ✓

*✓✗=unpractical or incomplete.

try to automatically infer their types based on some heuristic
rules (see §4.2.2).

• Option Impacts (OI). Program options impact the assign-
ment of variables and the execution of code through the
passing of data and control conditions. Variables that are di-
rectly assigned (or altered in the function) in option parsing
(i.e., flag and name in Line 16-17, doSum in Line 20, delta in
Line 23) are referred to as direct-impact variables (DIVs) im-
pacted by options. Through data flow and control flow, these
variables are then passed on to others, which are referred
to as indirect-impact variables (IIVs). In Figure 1, with “-a”
provided, the flag is set to 1, which will ensure the execution
of Line 31. Then, we can say “-a” has an impact on Line 31.

• Option Group (OG). In Figure 1, we can combine the op-
tions, “-a” and “-s”, as an option group, considering both of
their impacts on the same Line 32. Similarly, we can infer
option groups based on the impact analysis, and we will
formally elaborate it in §3. Note that for consistency, we also
treat a single option as an option group.

Actually, in our example, there exist two security bugs: integer
overflow in Line 34 and buffer overflow in Line 37. As shown in Fig-
ure 1, the two bugs can only be triggered if and only if the three
options, “-a”, “-s”, and “-t”, are provided as an option group at the
same time. Specifically, with “-a” (setting flag to 1), we can ensure
the execution of Line 31, 32, 37. Besides, with “-s”, we can enable
the execution of Line 34. Moreover, by providing “-t” with a proper
option value, we can finally trigger the two security bugs. In other
words, if we cannot provide the three options at the same time
during fuzzing, we can hardly identify the bugs.

2.2 Why Current Approaches Fall Short

Currently, researchers have proposed two main types of option-
aware fuzzers: the fuzzers, like AFL++-ARGV [2] andConfigFuzz [52],
which mutate the arguments and options together, and the fuzzers,
like CrFuzz [45], POWER [28], and CarpetFuzz [49], which only
mutate the arguments with a fixed option combination. However,
all of the existing methods have limitations in option extraction and
option combination. We present the detailed comparisons in Table 1.

• Unpractical and Incomplete Option Extraction. The ex-
isting ways to extract potential options can be summarized
into two categories, i.e., generation-based and document-
based. For generation-based methods, generating a legal

option is time-consuming. For example, by using AFL++-
ARGV [2], it could not produce a proper long option (con-
taining only five characters) within 24 hours. On the other
hand, for document-based methods, they directly extract
options from documentation. However, when the options in
the documentation and the code do not match, they could
only extract incomplete options, e.g., “-s” in Figure 1.

• Imprecise Option Combination. To achieve high code
coverage, existing works adopt various solutions to combine
options. Specifically, POWER [28] leverages the relevance
strategy to combine option configurations, and CrFuzz [45]’s
strategy is to enumerate all potential option combinations.
However, they do not take into account option dependencies,
and the number of random combinations can be exponen-
tial. ConfigFuzz [52, 53] manually extracts the option-related
grammars and labels option relationships from the documen-
tation as fuzzing templates, but it relies on manual effort.
CarpetFuzz [49] adopts NLP techniques to automatically
identify the option relationships in the documentation. How-
ever, a few option relationships are documented, and there
are incorrect records. In our dataset, only 21/56 programs
have dependencies recorded in the documentation. More-
over, triggering the bugs in Figure 1 requires option combi-
nation [‘a’,‘s’,‘t’], but the documentation does not reflect such
an option dependency. Therefore, coupled with incomplete
extraction, these works cannot discover the bugs in Figure 1.

2.3 Research Goals and Problem Scope

As the undocumented option problem exists in most option-aware
fuzzers, our first goal is to extract the complete option lists auto-
matically. Besides, our second goal is to combine options in a more
reasonable and fine-grained way. Finally, our last goal is to pro-
pose new fuzzing strategies to clearly identify the potential impacts
of program options. While we only focus on the command-line
options, our approach is applicable to other kinds of options, e.g.,
configuration files or environments. Besides, we only take care of
the option types and pick simple initialized option values to set up
fuzzing.

3 Option Impact Graph

To facilitate the extraction of options and the conduction of option
dependency analysis, in this work, we propose a new property
graph [5] based representation, called Option Impact Graph, which
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is combined with the abstract syntax tree (AST) and the program
dependence graph (PDG). The step of option extraction ( §4.2) and
the step of option impact analysis ( §4.3) allow option impact graph
to gradually take shape and assign the option groups as its node
property. Besides, we also propose graph traversals [16], which
can be used to filter the nodes according to specific node or edge
attributes, conclude all the nodes impacted by an option, and count
option group results from multiple dimensions. Formal definitions
of option impact graph are given below.

3.1 Definitions

Definition 1. As defined in the work [5], a property graph 𝐺 =

(𝑉 , 𝐸, 𝜆, 𝜇) is a directed graph, where 𝑉 is the node set, 𝐸 is the
directed edge set, and 𝜆 : 𝐸 → ∑

is an edge-type mapping function
which can assign different labels from

∑
to each edge. The key part

of the property graph is the function 𝜇 : (𝑉 × 𝐸) × 𝐾 → 𝑆 , which
can attach different properties to nodes and edges, where 𝐾 is the
property keys and 𝑆 is the property values.

Definition 2. As defined in the work [16], an AST-transformed
property graph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴, 𝜆𝐴, 𝜇𝐴) is a specific property graph
where 𝑉𝐴 and 𝐸𝐴 are given by AST, and

∑
𝐴 = {𝐴𝑆𝑇 }, and 𝐾𝐴 =

{𝑐𝑜𝑑𝑒, 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 }, and the 𝑆𝐴 contains the corresponding oper-
ators, operands, and natural numbers.

Definition 3. As defined in the work [16], a PDG-transformed
property graph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃 , 𝜆𝑃 , 𝜇𝑃 ) is a specific property graph
where 𝑉𝑃 and 𝐸𝑃 are given by PDG, and

∑
𝑃 = {𝐶, 𝐷} (control

and data dependency), and𝐾𝑃 = {𝑠𝑦𝑚𝑏𝑜𝑙, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 },
and the 𝑆𝑃 contains the corresponding variable symbols, true or
false condition value, and natural numbers.

Definition 4. In this work, we define an option impact graph 𝐺𝑂 =

(𝑉𝑂 , 𝐸𝑂 , 𝜆𝑂 , 𝜇𝑂 ) as a specific property graph with
• 𝑉𝑂 = 𝑉𝑂𝑃𝑇 ∪𝑉𝐷𝐼𝑉 ∪𝑉 ′

𝑃
• 𝐸𝑂 = 𝐸𝑂𝑃𝑇 ∪ 𝐸′

𝑃
• 𝜆𝑂 : 𝐸𝑂 → {𝑂𝑃𝑇,𝐶, 𝐷}
• 𝐾𝑂 = 𝐾𝐴 ∪ 𝐾𝑃 ∪ {𝑂𝐺}
• 𝑆𝑂 = 𝑆𝐴 ∪ 𝑆𝑃 ∪ P(𝑂)

where 𝑉𝑂𝑃𝑇 represents option nodes containing option names, and
𝑉𝐷𝐼𝑉 represents the DIV nodes containing DIVs (both of them are
extracted from 𝑉𝐴), and 𝑉 ′

𝑃
represents other nodes extracted from

𝑉𝑃 based on DIV dependency analysis, and 𝐸𝑂𝑃𝑇 = {(𝑣𝑖 , 𝑣 𝑗 ) |𝑣𝑖 ∈
𝑉𝑂𝑃𝑇 && 𝑣 𝑗 ∈ 𝑉𝐷𝐼𝑉 }, and 𝐸′

𝑃
represents other edges extracted from

𝐸𝑃 also based on the DIV dependency analysis, and 𝑂𝐺 represents
a new property key, i.e., Option Group, and P(𝑂) represents the
power set of the option set 𝑂 .
Property: Option Group. As introduced in §2.1, we use an option
group to represent a combination of options that have specific
impacts (control or data dependency) on the same node in the
option impact graph. To represent the potential option groups for
each node, we introduce a new property key, 𝑂𝐺 . Besides, to be
able to describe different option impacts, we represent each option
in the 𝑂𝐺 using the format “𝑜𝑖 : 𝑡𝑖 ” where 𝑜𝑖 means the 𝑖𝑡ℎ option
in the group, and 𝑡𝑖 means the type of 𝑜𝑖 .

Option
Extraction

Program
Source Code

Option Node Extraction

Option 
Grouping

Option-Aware
Fuzzing

Input Mutation
Strategy

Option Mutation
Strategy Bug Report

{AST}& {PDG}

Impact
Analysis

DIV Node Extraction

Option Impact Graph

Impact-based 
Grouping

Compile

DIV

Missing
Options

Missing
Options

Undocumented
Option Report

DIVs Locating

CallSite Expanding

Condition Decomposing

Global/Structure Tracking

Option Type Inference

Figure 2: OSmart Framework.

3.2 Traversals

As defined in the work [16], a property graph traversal is a mapping
function𝑇 :𝑃 (𝑉 )→𝑃 (𝑉 ), where𝑉 is the node set and 𝑃 is the power
set of 𝑉 . Moreover, one T can be combined with another, and we
use 𝑇1 ◦𝑇2 to represent the combination.

In this paper, we utilize the basic traversal and construct three
types of traversals. The first kind is the filter traversal, 𝑇𝑉 (𝑘 :𝑠 ) ,
which is used to filter out the nodes according to the condition
𝜇 (𝑘) = 𝑠 . The second is the predecessor traversals,𝑇𝑃𝑟𝑒 (𝑉 ), and the
successor traversals, 𝑇𝑆𝑢𝑐𝑐 (𝑉 ), to get the predecessor or successor
nodes of 𝑉 . The third is the impact traversals, 𝑇𝐼 (𝑉 ), to traverse
from𝑉 to all the nodes of the PDG that are within the option impact
of 𝑉 . Their definitions are provided in Appendix B.

4 Design

4.1 Overview

In this work, we propose OSmart framework, which consists of four
main components, as shown in Figure 2. First, we will transform the
program source code into AST-transformed and PDG-transformed
property graphs, i.e., 𝐺𝐴 and 𝐺𝑃 . Then, in §4.2, based on 𝐺𝐴 , we
introduce a heuristic-based method to automatically extract op-
tion nodes 𝑉𝑂𝑃𝑇 , followed by the DIV nodes 𝑉𝐷𝐼𝑉 identification
and type inference. In §4.3, we conduct an inter-procedural im-
pact analysis to extract all other nodes and edges of option impact
graph. Next, in §4.4, we will introduce our cartesian-product-based
algorithm, which can automatically calculate the option groups to
complete the option impact graph generation. Finally, in §4.5, we
propose two fuzzing strategies to detect potential security bugs
triggered by different option groups.

4.2 Option Extraction

After manually dissecting plenty of option parsing implementations,
we find out most of the parsing procedures have exposed a general
code pattern, command line inputs are compared sequentially within
a loop structure and operations such as assignments or function
calls are performedwhenmatching the option. Based on the pattern,
we propose a heuristic rule to extract all valid options automatically.

Meanwhile, we also realize that a specific code block will be
executed after matching the corresponding option, e.g., in Figure 1,
Line 16-18, Line 20-21, and Line 23-24 after matching the option “-a”,
“-s” and “-t” respectively.Within these blocks, some critical variables
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LITERAL, “a”

C_S, while

C_S, switch(c) ASSIGN, c=getopt(argc, argv, “a:st:”)

BLOCK

J_T, case

IDENT, argv

❶

❷

❸

❷
FUNC, 
strncpy()

ASSIGN, 
flag=1

Data-Depend

Edge

Backward
Analysis

AST Edge

IDENT, c

symbol : c

OPT Node

DIV NodeIDENT, name IDENT, flag

Figure 3: Option Extraction. (Omitting unnecessary nodes.)

are updated by option values or constant values. We identify these
assigned variables as DIVs and automatically infer option types
based on the assignment modes.

4.2.1 Option Node Extraction. Basically, option parsing is a
procedure to deal with the input arguments, argv, of the main func-
tion for C/C++ programs. The corresponding option names and
values are arranged adjacent to each other in the argv array. There-
fore, the key insight of our method is to identify the parsing code
that processes argv by using a heuristic Loop-Select-Target (LST
hereafter) rule. Specifically, the option parsing lines (Line 13-28)
in Figure 1 can be divided into the following three parts:

➊ Loop [“while”, “for”]: is used to iterate all of the items in the
argv array. To detect the loop structure in the source code, we can
use the filter traversal 𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐶_𝑆,𝑤ℎ𝑖𝑙𝑒/𝑓 𝑜𝑟 ”) on all nodes in 𝑉𝐴
and treat it as a loop node if its code attribute is CONTROL_STRUCT
(C_S in Figure 3), which contains “while” or “for” characters. Then,
for each loop node, if the following two kinds of nodes (select and
target) can be detected in the control areas of the loop node, we
will confirm it as the root node of the option parsing code.

➋ Select [“switch-case”, “if-strcmp”], which can be seen as se-
quential or nested comparisons, is the way to determine option
items provided bymost of the programs. Considering the real-world
implementations, there can be two types: switch-case-based selec-
tion and if-strcmp-based selection. While small programs usually
use an if-strcmp structure to select different options, large-scale
programs prefer the switch-case structure as its concise form. Note
that in Figure 3, there are two kinds of AST nodes, i.e., the C_S and
JUMP_TARGET (J_T), combined into a complete selection. Then,
we can use two simple filter traversals, i.e., 𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐶_𝑆,𝑠𝑤𝑖𝑡𝑐ℎ”)
and 𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐽 _𝑇,𝑐𝑎𝑠𝑒”) , to confirm the existence of the selection.

➌ Target [argv]: If the programs directly use argv as the parame-
ter, e.g., switch(argv) or strcmp(argv, “...”), we can directly extract the
corresponding option node, which is compared with the target, e.g.,
the shadow node (LITERAL, “a”) in Figure 3.When the target is not
argv, we can still adopt a backward analysis in the𝐺𝑃 to confirm
it. In our example, the variable c is used to select user-providing
options (Line 14), identified by the switch-case-comparison in𝐺𝐴 .
Next, we can use the data-dependency of the same variable in the
same location (i.e., line number) in 𝐺𝑃 to trace backward and find

that it is the return value of getopt(), which uses the argv as its
input parameter. After we confirm the existence of option parsing,
we can extract the ‘a’ as one valid option according to the Select
object. Finally, we will repeat the above steps to find all the options
and add them as our option nodes 𝑉𝑂𝑃𝑇 into the option impact
graph.

4.2.2 DIV Node Extraction. After extracting the option nodes,
we should recognize the corresponding DIV nodes, i.e., 𝑉𝑂𝑃𝑇 , and
add them into option impact graph. First, we need to figure out
each option’s control scope, i.e., a subset in 𝑉𝐴 impacted by a spe-
cific option during option parsing. Specifically, for the if-strcmp-
comparison, we recognize each subset under the corresponding if -
control block(s) using traversals like 𝑇𝑆𝑢𝑐𝑐 ◦𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐶_𝑆,𝑖 𝑓 ”) . For
the switch-case-comparison, we recognize the subsets between case
and break nodes. using traversals like (𝑇𝑆𝑢𝑐𝑐◦𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐶_𝑆,𝑐𝑎𝑠𝑒”) )∩
(𝑇𝑃𝑟𝑒 ◦𝑇𝑉𝐴 (𝑐𝑜𝑑𝑒 :“𝐶_𝑆,𝑏𝑟𝑒𝑎𝑘”) ). Second, as DIVs are updated under the
control of each option, in this work, wemainly focus on two kinds of
nodes: the destination operands of assignment statements, e.g., the
blue node (IDENT, “flag”) under the ASSIGN node in Figure 3 and
the returned values or out parameters of function statements, e.g.,
the blue node (IDENT, “name”) under the FUNC node in Figure 3.

4.2.3 Option Type Inference. To assign the OG properties for
the option and DIV nodes, we need to infer the option types based
on how their DIVs are created. Here, we only consider three com-
mon option types, numeric, string, and 𝜀, a little different from a
recent OAF [52, 53], which relies on manual analysis of official doc-
uments. In this work, we try to automatically infer types according
to the assignment behaviors. First, we will check whether there is
an option value used to create the DIVs, and if no, we say the option
type is 𝜀. Second, if the option value appears, we will infer the types
based on the specific API usage. For example, when programmers
use atoi(optarg) or strtol(optarg) to set one of its DIVs, e.g.,
Line 23 in Figure 1, then we can say the option has a numeric type
and assign the option group attribute [“𝑜𝑖 : 𝑁 ”] for the option node
and all its DIV nodes. Similarly, when one of the DIVs is updated
through the function strncpy, we can reasonably infer its type as
a string and then attach [“𝑜𝑖 : 𝑆”] with them. Third, if we cannot
find any specific API usage, we just say its type is string.

4.3 Impact Analysis

After extracting options and DIVs from AST, we begin the impact
analysis, i.e., propagating the DIVs in the PDGs, extracting impacted
nodes, and adding the nodes into option impact graph.

To this end, we can use the impact traversal (defined in §3.2)
on the 𝐺𝑃 starting from the DIV nodes to find out the data- and
control-dependent nodes. However, considering the limitations of
the traditional PDG [17], we need to solve the following questions
to complete the inter-procedural analysis: (1) locating the DIVs in
PDG to start impact analysis, (2) expanding the function callsites
to support inter-procedural analysis, (3) decomposing conditions
to solve potential false positives, (4) tracking global or structure
variables to solve potential false negatives.

To overcome the above problems, we have proposed the follow-
ing Rules to facilitate the impact analysis.
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R1: DIVs Locating. A prerequisite of the option impact analysis is
to recognize the DIVs in PDG corresponding to the ones extracted
from AST (§4.2.2). In this work, we complete it simply by the line
number, a common property used both in𝐺𝐴 and𝐺𝑃 (see the defini-
tions in §3.1). By using the filter traversals, like𝑇𝑉𝑃 (𝑙𝑖𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 :𝑁 ) ,
we can extract the nodes 𝑉𝐷𝐼𝑉

𝑃
containing DIVs in 𝐺𝑃 . Then, we

can use the impact traversal, like 𝑇𝐼 (𝑉𝐷𝐼𝑉
𝑃

), to start the impact
analysis.
R2: CallSite Expanding. To support inter-procedural analysis,
when meeting a function callsite, say 𝐹 , we will try to expand it, i.e.,
connecting the current node with the nodes copied from the 𝐺𝐹

𝑃
.

Specifically, we expand the connection process via the following
kinds of nodes from 𝐺𝐹

𝑃
:

• Method Node: We will first copy this node from 𝐺𝐹
𝑃
and

connect the callsite node with it using a control-dependency
edge if there is any control dependency propagated to the
callsite, e.g., the left red control-dependency edge in Figure 4
(a).

• Parameter Node: For any parameter in the callsite state-
ment, if it can be reached through the impact traversal, we
will copy its corresponding parameter node from𝐺𝐹

𝑃
and add

the proper data-dependency edge based on the ones propa-
gated to the callsite, e.g., the middle blue edges in Figure 4
(a).

• Method_Return Node: We will copy this kind of node
from𝐺𝐹

𝑃
if a return value is held in the callsite. Then, we will

connect it back to the callsite with a RET data-dependency
edge, e.g., the right middle blue edge in Figure 4 (a).

• Statement Node: If any of the above nodes are copied to
expand the callsite, we will start to traverse the nodes in the
𝐺𝐹
𝑃
and extract data- and control-dependent nodes and edges.

If the method_return node is copied, we will try to copy
all the reachable return-statement nodes and connect them
back to the method_return node using RET data-dependency
edges, which can ensure correctness even when meeting
multiple return statements in 𝐺𝐹

𝑃
.

Theoretically, we should expand all the callsites for each user-
defined function during our impact analysis. Specifically, for each
callsite of Function F, we use a bit vector, say 𝐵𝑉𝐹 , whose length is
2+#P, and the #P is the number of the parameters. For each function
callsite, we set the corresponding bit if the method node, any of
the parameter nodes, or the method_return node is copied. Then,
we will not expand the function again if its bit vector has been met.
Finally, we treat the function-pointer callsites and the third-party-
library callsites (e.g., printf()) as normal statements, i.e., only
considering if there are two or more options that can impact these
callsites. If there is any out parameter (by reading the third-party-
library functions’ declarations), e.g., snprintf(), OG properties are
propagated from input parameters to out parameters.
R3: Condition Decomposing. When meeting condition state-
ments containing DIVs or IIVs, we should decompose them to de-
termine the minimum condition that satisfies the judgment. For
ones connected by and, they should be tracked together, as shown
in Figure 4 (b). The impacts carried by these IIVs will be combined
and passed on to the nodes controlled by the statement. However, if
connected by or, they only need to be met on one side and we track

Line 34: 
len = sum(len, delta);

Line 7:  
S: return x+y;

Line 6: 
M: sum

x yTRUE RET

if((a&&b)||(c&&d))

statement1 statement2

(a&&b)

a

(c&&d)

statement1 statement2

(a) CallSite Expanding (b) Condition Decomposition

RETTRUE len delta

TRUE len delta

Line 6: 
P: x

Line 6: 
P: y

Line 6: 
M_R: int

b c d

a b c d

𝑮𝑷
𝒔𝒖𝒎()

𝑮𝑷
𝒎𝒂𝒊𝒏()

1 1 1 1

BVsum()

Figure 4: Illustration of Rules for Callsite Expanding and

Condition Decomposing.

them independently. The impacts will be separated according to the
two sides of or statement and passed on. To solve this problem, we
decompose the conditions based on the code structure presented in
𝐺𝐴 . Specifically, whenever we meet a condition statement in the
PDG, we will find and parse the corresponding statement in AST by
the line number. Firstly, we collect all of the children nodes, which
are sub-trees rooted at the condition statement node. Secondly, we
begin our analysis from the leaf nodes containing the variables and
recursivelymerge them based on the or and and connectors until we
meet the root node. Finally, we pass the parsing results, containing
the groups of variables, back into PDGs for further analysis.
R4: Global Variable Tracking. In the traditional PDGs, global
variables have not been tracked, which will lead to many false
negatives, as they can also be global DIVs or IIVs. To solve this
problem, we identify all global variables by a public API provided
by LLVM [14], i.e., Module->getGlobalList(), and store them in a
global mapping dictionary, GMD, whose keys are the global variable
names and values are the related OGs. During the analysis, we
check each node and confirm if it contains any global variable
whose name is recorded in the GMD. If the global variable is used as
the source value, we get its OG property from GMD and propagate it.
If the global variable is used as the destination value, we will inherit
the OG properties from their parent nodes and store them in GMD.
Since global variables may be modified with other operands, and
the accurate execution order can hardly be statically determined,
we propose an optimized rule to reduce the potential false negatives.
Specifically, when global variables are assigned by other variables,
we do not modify the global dictionary, and we only propagate the
modifications inside the function, which will cause some acceptable
false positives.
R5: Structure Variable Tracking. To track the DIVs/IIVs hidden
in some structure variables, i.e., their members, we first record
these variables as a special kind of IIVs, i.e., S-IIVs. Then, we track
them along with other influenced variables but with field-sensitive
analysis. Specifically, we check each access point for these S-IIVs
and confirm if the proper members are used as source operands; if
yes, we will then track the destination operands as new IIVs.
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[“a:S”] [“a:S”,	“s:𝜀”,	“t:N”]len

name [“a:S”]

[“a:S”][“a:S”]
M_Data[var] Cartesian Product

[“a:S”] [“a:S”,	“s:𝜀”,	“t:N”]

OG_DATA

[	[“a:S”]	,	
[“a:S”,	“s:𝜺”,	“t:N”]	]

⨯

⨯

Figure 5: Grouping By Data-dependency. (For Line 37 in Fig-

ure 1.)

4.4 Option Grouping

With the above two steps, we obtain an initialized option impact
graph𝐺𝑖𝑛𝑖𝑡

𝑂
, which contains all the impacted nodes but without𝑂𝐺

properties. In this step, we propose amethod to aggregate the option
impact and generate option combinations. The option impacts of
the node are propagated through the data and control dependencies.
Therefore, we combine the two parts of options. In addition, source
operands might be assigned through different paths because of
static analysis. Taking path sensitivity into account, we leverage the
Cartesian product to put different data-dependent options obtained
by a single operand into different option combinations.

4.4.1 Grouping Algorithm. Algorithm 1 gives the details of our
grouping method, and its input is the 𝐺𝑖𝑛𝑖𝑡

𝑂
, and the output is a

complete option impact graph𝐺𝑂 . Generally, the algorithm consists
of two main steps:
Initialization Stage. In Lines 1-9, we first initialize the 𝐺𝑂 with
𝐺𝑖𝑛𝑖𝑡
𝑂

and then begin to assign the 𝑂𝐺 property to its option nodes
and DIV nodes. Specifically, as introduced in §4.2.3, we will infer the
type of each option by analyzing the assignment behaviors of all its
DIVs, and then construct the 𝑂𝐺 for each option node and its DIV
nodes. Finally, in Line 10, we construct a sequence queue, Q_Node,
storing the nodes in topological order [26]. Note that accessing the
nodes in topological order can guarantee that all of the parents of
the currently visited node already have the 𝑂𝐺 .
Main-Loop Stage. In Lines 11-27, we present the main body of our
algorithm, a large loop-based process that can be split into three
sub-stages (SS). Note that the termination condition of this loop is
that the Q_Node becomes empty, i.e., having attached the𝑂𝐺 for all
nodes.

• SS-1: Grouping By Data-dependency. In Lines 12-21, after
fetching the currently visited node, i.e., v𝑐𝑢𝑟 , from the Q_Node,
if it has no𝑂𝐺 , we begin the following calculation. First, we
prepare an empty dictionary M_Data to temporally store all
the 𝑂𝐺 values from the parents who have data-dependency
on the current node. Specifically, by iterating the parent
nodes through the traversal 𝑇𝐷

𝑃𝑟𝑒
(Line 17), we fetch the

proper variable var, by accessing the symbol property of the
related edges (Line 18), and use it as a key of the M_Data to
store the related 𝑂𝐺 inherited from the parent nodes (Line
19), as shown in the left of Figure 5. Second, as one node
can be impacted by multiple variables, and single variable
may have multiple groups, in Line 21, we operate a Cartesian
product on M_Data to get all potential data-dependency 𝑂𝐺 .
We depict this step and the results in the middle and right of
Figure 5.

• SS-2: Grouping By Control-dependency.While we also
use the foreach to iterate all the parent nodes (Line 23),
which v𝑐𝑢𝑟 has control-dependency on, we should know that

Algorithm 1: Grouping
Input: G𝑖𝑛𝑖𝑡

𝑂
: an initialized OIG, only containing nodes without OG

Output: G𝑂 : a complete OIG, all nodes have𝑂𝐺

1 G𝑂 = G𝑖𝑛𝑖𝑡
𝑂

2 foreach v𝑂𝑃𝑇 ∈ getOPTNode(G𝑂) do
3 DIV_Set = getDIVNodes(v𝑂𝑃𝑇 )

4 t = getOPTTypeByDIVType(DIV_Set)
5 v𝑂𝑃𝑇 .𝑂𝐺 = [getOPTName(v𝑂𝑃𝑇 ): t]
6 foreach v𝐷𝐼𝑉 ∈ DIV_Set do
7 v𝐷𝐼𝑉 .𝑂𝐺 = [getOPTName(v𝑂𝑃𝑇 ): t]
8 end

9 end

10 Q_Node = getNodesByTopoOrder(G𝑂)
11 while !Q_Node.empty() do
12 v𝑐𝑢𝑟 = Q_Node.pop()
13 if hasOG(v𝑐𝑢𝑟 ) then
14 continue

15 end

16 M_Data = {}
17 foreach v𝑝𝑎𝑟𝑒𝑛𝑡 ∈ T𝐷

𝑃𝑟𝑒
({v𝑐𝑢𝑟 }) do

18 var = e(𝑣𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑣𝑐𝑢𝑟 ).symbol
19 M_Data[var].append(v𝑝𝑎𝑟𝑒𝑛𝑡 .𝑂𝐺)

20 end

21 OG_DATA = getCP(M_Data)
22 OG_CTRL = []
23 foreach v𝑝𝑎𝑟𝑒𝑛𝑡 ∈ T𝐶

𝑃𝑟𝑒
({v𝑐𝑢𝑟 }) do

24 OG_CTRL.append(v𝑝𝑎𝑟𝑒𝑛𝑡.𝑂𝐺)

25 end

26 v𝑐𝑢𝑟 .𝑂𝐺=getCP({‘DATA’:OG_DATA, ‘CTRL’:OG_CTRL})
27 end

there is no more than one control-dependency edge based
on the formal definition of PDG. Consequently, if there is
indeed a control-dependency from its parent, we just use the
OG_CTRL to inherit the parent’s OG.

• SS-3: Group Generation and Propagation. In Line 26, we
get the option groups for the currently visited node through
the second Cartesian product on the OG_DATA and OG_CTRL.
To facilitate the calculation, we add the corresponding two
labels, i.e., ‘DATA’ and ‘CTRL’, for the two kinds of groups. The
details of the second Cartesian-product are similar to the
first one, which is already depicted in Figure 5.

4.4.2 Conflict Identification. Based on our observations, which
are also described in recent works [49, 52, 53], there are many
mutually exclusive, i.e., conflict relationships between different
options. Unfortunately, our current grouping algorithm cannot
automatically identify such potential false positives. To solve this
problem, besides manual identification based on the documents, we
also propose a heuristic post-process based on a common coding
behavior, i.e., if the influenced variables of two or more options
converge into a control structure node under which there is an exit
statement, we treat all the involved options as conflict ones, whose
relationships will be removed from our grouping results.

4.5 Fuzzing Strategies

Basically, there are two kinds of input data that can trigger security
bugs, i.e., normal input and program options. Unlikemutation strate-
gies adopted by existing option-aware fuzzers, i.e., mutating the
arguments and options together, or only mutating the arguments
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with fixed options, we mutate the input and option separately. Ac-
cordingly, after extracting all options and potential combinations,
we use two fuzzing strategies, Option-Mutation(OM) and Input-
Mutation(IM), to detect the security bugs. For the OM strategy, for
each option of the inferred combinations, we will fix the input and
mutate the option values according to the option type (string, nu-
meric, or 𝜀). Specifically, for string and numeric options, the initial
content is randomly increased, decreased, or replaced. For 𝜀 options,
we randomly enable (keep) or disable (remove) them. For the IM
strategy, we will fix each inferred option combination with initial
option values, e.g., “abc" for string options and “123" for numeric
options. We execute dry runs for each combination with the same
seed to exclude combinations that will exit early and then mutate
the input for each fuzzing round like AFL++.

5 Implementation

We implement OSmart based on the open-sourced JOERN [25],
which can generate the AST-transformed and PDG-transformed
property graphs from the source code. OSmart contains about 4.3K
lines of Python code, including about 1.6K lines of code to imple-
ment option extraction and about 2.7K to analyze option impact
and generate option impact graph. We also use the latest version of
AFL++ [1]. Now, we will introduce several implementation details
of OSmart.
Topological Sort.We use getNodesByTopoOrder() at Line 10 in Al-
gorithm 1 to get all nodes in the topological order. When calculating
the OGs of each node, we need to inherit the OGs from its parent
nodes. Therefore, we should arrange the node traversal order and
guarantee that all of its parents have been visited and attached to
the OG property. While the topological sort is ideal, it only works
on a DAG(Directed Acyclic Graph), which is unsuitable for real-
world programs because of potential loops. In this work, we use the
line number to break any potential loop, making each line appear
only once, achieving an approximate solution.
OM Fuzzing Strategy. While the IM strategy can be easily imple-
mented based on traditional fuzzing, we should do some more work
to implement the OM strategy. Compared with input-mutation,
which relies onmutating the content of an input file, option-mutation
actually needs to mutate the option value directly. To this end, we
slightly transform the option parsing code, i.e., fetching option val-
ues from outside files, which are then mutated by existing fuzzing
works.

6 Evaluation

We mainly evaluate OSmart on the following aspects:
• Option Extraction: Can OSmart efficiently identify docu-
mented and undocumented options? How about false posi-
tives and false negatives?

• Option Grouping: How many groups can be automatically
identified by OSmart? Can OSmart infer option groups that
cannot be easily identified from documents? How do option
groups found by OSmart perform compared with those of
CarpetFuzz [49]? Are there any wrong (misleading) group
descriptions in official documents?

• Fuzzing Efficiency: Can OSmart improve the performance
of current fuzzing tools? How many unreachable codes can

be found by the option group with an undocumented option?
What about the comparison results with existing option-
aware fuzzing work?

• Bug Detection: Can OSmart discover security bugs trig-
gered through proper option combinations? How about the
effectiveness of the two fuzzing strategies? What can we
learn from these bugs?

6.1 Experiment Setup

Benchmark. We collected 56 programs, with the latest version of
their source code, from 25 popular large-scale packages (e.g., QEMU,
OpenSSH, PHP) and third-party libraries (e.g.,libtiff, libxml2, libpng)
as our dataset. To keep the fairness of our selection, we tried to cover
asmany types of option-involved programs as we could. Our dataset
contained five types: machine emulators, network servers/tools,
script engines, databases, and common tool collections/libraries.
Environment.We evaluated OSmart on a 96-core machine run-
ning Ubuntu 20.04.1 LTS with four Intel Xeon Platinum 8268 CPUs
and 409 GB memory. We installed JOERN 1.1.1066 [25] and con-
verted the source code to AST-transformed and PDG-transformed
property graphs stored in dotfiles [24]. To fetch the global variables,
we used LLVM 13.0 [14].

6.2 Option Extraction

6.2.1 Extraction Results. From the Option Extraction main col-
umn of Table 2, we could see that OSmart unexpectedly found 193
undocumented options not presented in the helpmessages. Interest-
ingly, we discovered undocumented options in popular large-scale
programs (e.g., the latest version of QEMU, PHP) and popular third-
party libraries ( e.g., libxml2, binutils). In total, more than 67.9% of
programs did not provide all valid options in their help messages.

In addition, as shown in Table 2, OSmart extracted 4,924 DIVs
from the option parsing procedure. These DIVs were then used
as source variables to propagate the option impacts. Besides, we
inferred the types of DIVs according to assignment modes. 161 DIVs
were numeric, 2,398 were string, and the rest were 𝜀. We used these
DIV types to infer 161 numeric, 460 string, and 1038 𝜀 options.

Finally, based on our manual confirmation, we found that devel-
opers mainly chose while-switch-case-optarg (WSCO), for-if-strcmp-
argv[i](FISA), and their variants to parse options. We found most
(83.9%) of developers preferred to while-switch-case-getopt. The
main reason was that the switch-case could make the parsing code
more concise and maintainable than the if-strcmp.

6.2.2 A Real Undocumented Option. Listing 1 presents a code
snippet of the xmlcatalog program, which contains an undoc-
umented option, “–convert”, identified by OSmart. Specifically,
based on the if-strcmp rule, our tool identified the “–convert” op-
tion and the related DIV convert, which was then used as a con-
dition in Line 6. However, this option was not listed in the help
messages. Consequently, this undocumented option led to the un-
reachable code, Line 7, which contained a callsite of an important
function, xmlCatalogConvert(). For existing option-aware fuzzers,
like POWER [28] and CarpetFuzz [49], this undocumented option
made them miss the chance to examine this function.
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Table 2: OSmart Analysis Results. (W/F)SC(O/A) = (While/For)-Switch-Case-(Optarg/Argv[i]). (W/F)I(K/S)A = (While/For)-If-
(Keymatch/Strcmp)-Argv[i]. Doc. = Documented. Com. = Complete ( ✓) or not (%). #Un = Number of undocumented options.

#Dep/#Con/#CG/#OG = Number of dependency relationships/conflict relationships/confilct option groups/final option groups.
C-Error=Compilation error. M-Error = No man page found. O-Error = No option can be extracted. Δ= Unique line coverage.

ΔUn= Unique line coverage of undocumented options.

Package Program

Option Extraction Option Grouping Fuzzing

Pattern Doc. Com. #Un DIV

Type

Doc.

Carpet OSmart

AFL++ ΔCarpet ΔOSmart ΔUn
Num / Str #Dep+#Con/#OG #OG+#CG

Libtiff

4.5.0

fax2ps WSCO 8 ✓ - 12 6/0 2 0+0/64 14+0 5145 22 315 -

fax2tiff WSCO 29 % 2 37 3/4 0 0+9/812 49+1 1567 198 501 6

tiff2ps WSCO 31 ✓ - 41 12/5 6 0+8/841 187+159 9750 94 989 -

tiff2rgba WSCO 7 % 1 13 3/1 0 0+0/- 20+2 7574 - 1103 450

tiffcp WSCO 21 ✓ - 105 5/55 0 0+2/405 40+11 454 219 749 -

tiffcrop WSCO 34 % 4 175 12/15 3 1+3/693 83+21 12075 162 555 564

tiffinfo WSCO 14 % 1 17 3/2 0 0+0/116 33+0 5494 33 340 127

Binutils

2.39

as WSCO 81 % 10 674 5/480 0

C-Error

368+34 13669 - 3552 1253

gdb WSCO 34 % 6 30 3/4 1 40+1 x*

gprof WSCO 42 % 1 119 4/45 3 325+79 5343 - 455 331

objdump WSCO 52 ✓ - 194 4/47 12 611+42 20037 - 6676 -

readelf WSCO 47 % 2 137 3/16 0 108+20 9790 - 8176 2411

size WSCO 11 % 1 20 1/3 0 13+2 4334 - 410 137

Qemu

7.2.0

qemu-edid WSCO 10 ✓ - 14 5/9 0

M-Error

14+0 450 - 51 -

qemu-img bench WSCO 17 % 1 41 7/18 0 41+5 1019 - 7991 374

qemu-img convert WSCO 25 % 1 52 3/33 0 57+6 2361 - 8444 231

qemu-img dd WSCO 5 % 1 5 0/3 0 12+3 1040 - 4653 513

qemu-img measure WSCO 9 % 1 33 1/26 0 20+3 1035 - 6690 111

qemu-nbd WSCO 22 % 1 87 2/59 2 351+74 6820 - 3571 1494

Mupdf

1.21.1

mupdf-x11 WSCO 10 % 1 17 6/7 0 0+0/116 57+16 1037 0 153 115

muraster WSCO 19 % 2 42 9/23 0 M-Error 209+91 27487 - 5566 958

mutool clean WSCO 17 ✓ - 19 1/6 0 O-Error 278+51 1412 - 19392 -

mutool convert WSCO 10 ✓ - 13 4/8 0 O-Error 23+6 54 - 5757 -

Openssh

v_9_1_P1

scp WSCO 23 % 3 22 1/4 0

O-Error

237+97 3369 - 160 0

sftp WSCO 24 ✓ - 25 3/8 0 30+9 3529 - 19 -

ssh WSCO 44 ✓ - 140 0/76 1 119+18 3548 - 970 -

ssh-agent WSCO 9 % 1 10 0/4 0 17+8 4518 - 18 7

Jasper

4.0.0-rc1

imgcmp WSCO 5 % 5 12 2/5 0
O-Error

22+3 631 - 1346 42

imginfo WSCO 8 % 6 17 3/4 0 16+1 3859 - 409 102

jasper WSCO 11 % 6 23 3/8 0 30+16 4047 - 243 66

Httpd

2.4.54

ab WSCO 35 ✓ - 85 7/18 2 0+2/592 117+49 114 153 110 -

htdbm WSCO 15 ✓ - 17 0/0 0 1+1/313 17+5 123 107 45 -

Libarchive

3.6.2

bsdcpio WSCO 10 % 32 54 1/1 0
O-Error

69+34 6936 - 771 2

bsdtar WSCO 19 % 66 132 4/1 0 108+51 7711 - 3720 633

Libjpeg

2.1.4

cjpeg FIKA 23 ✓ - 34 0/6 1 0+4/583 21+2 3459 79 296 -

tjbench FISA 35 % 3 61 4/2 7 0+21/783 328+0 655 140 6089 189

Libxml2

2.10.3

xmlcatalog FISA 8 % 1 13 0/0 3 0+0/116 39+0 90 110 47 2

xmllint FISA 64 % 2 108 2/50 1 0+1/698 102+2 193 883 572 43

Nasm

2.16.01

nasm WSCA 40 % 4 97 1/21 0 0+6/737 30+2 7220 294 275 14

ndisasm WSCA 11 ✓ - 125 1/88 0 0+0/169 14+2 1127 145 179 -

PHP

8.2.0

php WSCO 28 % 2 44 1/11 0 O-Error 23+0 25477 - 1427 0

phpdbg WSCO 21 % 1 23 0/7 0 0+1/342 89+0 x*

S2n-tls

1.3.31

s2nc WSCO 30 ✓ - 45 4/19 1
M-Error

53+11 904 - 25 -

s2nd WSCO 28 % 1 37 4/14 1 42+8 106 - 37 13

Catdoc 0.95 catdoc WSCO 14 ✓ - 14 1/4 0 0+1/283 17+0 380 72 482 -

Gifsicle 1.93 gifsicle WSCO 57 % 4 1088 0/771 0 1+7/- 206+3 2335 - 3090 240

Jhead 3.06.0.1 jhead FISA 45 % 1 109 0/10 0 0+1/467 1669+434 1028 78 592 35

Libdwarf 0.5.0 dwarfdump WSCO 102 % 2 159 5/128 5 0+0/1 5894+231 15261 0 834 179

Libming 0.4.8 makeswf WSCO 14 % 1 53 0/40 0 0+0/240 33+0 2396 567 411 732

Libpng 1.6.39 pngfix WISA 9 % 2 24 1/3 1 M-Error 10+1 1016 - 162 126

Libsixel 1.8.6 img2sixel FSCO 33 % 1 116 3/0 6 5+1/678 31+0 1289 311 2314 352

Nginx 1.23.3 nginx WSCA 11 ✓ - 26 0/5 0 O-Error 19+2 3235 - 4101 -

Sngrep 1.6.0 sngrep WSCO 17 ✓ - 57 2/45 0 0+0/281 21+0 1127 68 114 -

Sqlite3 3.40.1 sqlite3 FISA 43 % 5 38 1/11 1 0+1/381 40+1 25990 0 974 975

W3m 0.5.3 w3m WISA 44 % 8 67 5/7 1 0+1/633 74+1 4737 0 44 6

Yasm 1.3.0 yasm FISA 31 ✓ - 158 0/158 1 C-Error 58+1 13791 - 116 -

Total 1466 % 193 4924 161/2398 61 8+70/10344 12560+1531 288146 3735 116081 12833

x*: Gdb and phpdbg are interactive programs, difficult to calculate line coverage.
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1 // option parse
2 if ((!strcmp(argv[i], "-convert")) || (!strcmp(argv[i], "

--convert"))) {
3 convert++;
4 }
5 // use the undocumented option
6 if (convert)
7 ret = xmlCatalogConvert();

Listing 1: An Undocumented Option in xmlcatalog.

6.2.3 FP and FN. Wemanually analyzed the program code, found
out the options defined, and recognized the type of each option in
the program as a benchmark. For option node extraction, we com-
pared artificial results with the options extracted by the LST-rules.
The accuracy, precision, and recall of our rule on the benchmark
were 80.3%, 82.3%, and 97.0%, respectively. There were two main
false positives during our evaluation: interactive commands and
sub-program commands. Specifically, the interactive programs, e.g.,
gdb, received many user commands during debugging or running.
Besides, various sub-program commands were commonly used to
construct larger programs, e.g., qemu-img andmutool. In such cases,
OSmart would incorrectly recognize them as options. The main
reason for false negatives is that some programs try to parse par-
tial options in a latent way. For example, when an option object
is passed into the getopt_long() function and its *flag variable
is not empty [19], the function will directly complete the option
parsing task, i.e., *flag points to val. In such cases, OSmart cannot
extract the options.

For option type inference, we confirmed that there were totally
82 false positives. Based on our manual analysis, there were two
main reasons that could lead to the false positives. Firstly, the pro-
grams chose custom-defined functions to wrap the official APIs,
e.g., using qemu_strtoui for aoti() in qemu, which were beyond our
rules. Secondly, the programs chose custom-defined variables for
the standard ones, like optarg and argv[i], to carry the option val-
ues in the parsing code, which could also lead to incorrect type
inference as we thought there was no option value assigned and
treated their types as 𝜀.

6.3 Option Grouping

6.3.1 Combinations From OSmart. As shown in the second
main column of Table 2, compared with only 61 relationships de-
clared in the official documents, OSmart inferred 12,560 option
groups in 56 programs. In other words, by using OSmart, we could
obtain more than 205× relationships. In addition, OSmart inferred
1669 and 5894 option groups for jhead and dwarfdump because of
the large number of options and frequent usages for their DIVs.
By adopting conflict identification, OSmart also identified 1,531
conflict relationships. For example, for tiffcrop, whenever provid-
ing “-H” and “-W” at the same, it would promote an error message,
i.e., “only one of -H or -W to define a viewport”, which could help
us to identify the conflict, and we would only keep one of them.
Besides, when providing “-r auto” with one of the above two op-
tions, it would say, “-r auto is incompatible with maximum page
width/height specified by -H or -W”, meaning that the “-r” was mu-
tually exclusive with the option “-H” or “-W” if it took the initialized
value “auto”.

338.    case ‘c’:
339.               cipher_prefs = optarg;  
……
393.    case ‘a’:
394.              session_ticket_key_file_path = optarg;
……
443.    case ‘E’:
444.               max_early_data = atoi(optarg);
……
591. b s2n_set_common_server_config(max_early_data, config, 

conn_settings, cipher_prefs, session_ticket_key_file_path);

Figure 6: Grouping Details in s2nd.c.

Moreover, we deeply analyzed the dependency type of option
groups by OSmart, among which there were 7,505 option groups
that could be obtained by control dependency, 6,858 ones by data
dependency, and 1,1341 ones by combination of control with data
dependency. There was a crossover between the three types. We
found the combination of control and data dependency obtained
the most option groups. When there were more control structures
in the program, and DIVs or IIVs acted as judgment conditions,
the number of option groups obtained by control dependency and
control with data dependency would increase.

6.3.2 Combinations FromDocumentation. In total, there were
12,150 option groups that OSmart could find but could not be di-
rectly inferred from the documentation descriptions. For example,
for program s2nd, the option “-c” meant “Set the cipher preference
version string”, the option “-E” meant “Sets maximum early data
allowed in session tickets”, and the option “-a” meant “Location of
key file used for encryption and decryption of session ticket”. Ap-
parently, we could not conclude the relationship between these
options according to the description in the documentation. How-
ever, we found the data dependencies between the DIVs of these
options, and these DIVs were used as parameters of the same func-
tion s2n_set_common_server_config in s2nd.c:591, as shown in Fig-
ure 6.

Besides, in order to clarify whether OSmart could cover the
option groups mentioned in the help documents, we manually iden-
tified all the relationships in the documents. We manually found
61 option groups from the documents, as shown in the Doc. sub-
column of the second main column of Table 2. By comparing the
results of OSmart with the option combinations in the documenta-
tion, OSmart missed 21 relationships in the documentation. We an-
alyzed these relationships in depth and found that OSmart missed
11 relationships in 6 programs due to dependencies not being found
in the program, missed 8 in 2 programs due to the absence of func-
tion pointers analysis, missed one due to complex option parsing
and direct DIV assignment not being found, and missed one due to
macro definitions leading Joern failed to generate the graphs.

6.3.3 Combinations From CarpetFuzz. We also compared the
grouping results from CarpetFuzz [49] which combined the op-
tions through NLP techniques to extract dependency and conflict
relationships from man pages. In particular, we applied it to all 56
programs. However, it could only work on 17 programs, extracting
8 dependencies and 70 conflict relationships, which produced 10344
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combinations. For the remaining 30 programs, the CarpetFuzz failed
due to compile error (C-Error), man page not found error (M-Error),
or no option found error (O-Error). There were 9 programs that
had no relationships in the result, but they could still be utilized
due to the N-wise combination strategy adopted by CarpetFuzz.
In addition, tiff2rgba and gif2sicle could not combine options
properly. Totally, CarpetFuzz could not apply to 32/56 of our dataset,
meaning that it could not be widely used.

We manually analyzed the 8 dependencies extracted by Car-
petFuzz. OSmart could find 4 of them and missed 3 relationships
in img2sixel due to function pointers mentioned in 6.3.2. For the
“-b” and “-t” in htdbm, we could not figure out any relationship
between the two options from document or code. Besides, we also
used CarpetFuzz to generate option groups for these programs,
which contained the programs that could not be extracted any
relationships. Finally, with the extracted relationships, including
the dependencies and conflicts, CarpetFuzz totally generated 10344
option combinations.

6.3.4 Wrong Relationship Descriptions. During our evalua-
tion, it was unexpected that a wrong description existed in the
tiffcrop’s official document. Based on the help explanation, the
option “-J” was used to “Set ... when ... using the -S cols:rows option”,
which implied the group relationship of the two options, “-J” and
“-S”. However, OSmart found that there was an exit when both of
them were provided, meaning that this group would be eliminated
by conflict identification. In fact, based on our manual review, the
function enabled by these two options was an ERROR function
(“TIFFError”), so the program would be terminated if the two op-
tions were provided. As a result, this kind of wrong description
would mislead most of the current option-aware fuzzing works,
e.g., the works [49, 52, 53] that relied on official documents.

6.4 Fuzzing Efficiency

6.4.1 Improvement Of OSmart. To evaluate the improvement
of OSmart, We ran each fuzzer on one CPU core for 48 hours
with the IM strategy separately and repeated it 5 times to avoid
the uncertain impact on all evaluations. Since gdb and phpdbg were
interactive programs, it was difficult to calculate their line coverage.
OSmart Vs. AFL++: In conducting the fuzzing experiments with
AFL++, we used the least options that would make the program run
to start AFL++ and used the option groups obtained for OSmart to
run OSmart. In Table 2, AFL++ represents the line coverage with
AFL++, and ΔOSmart represents the unique line coverage obtained
by OSmart more than AFL++. According to the results for ΔOSmart
in Table 2, OSmart could lead to new coverage gains. In total, AFL++
got 288,146, while OSmart found 116,081 more than AFL++, which
was 40.3% of the total AFL++. Also, for individual programs, in terms
of number, OSmart could find up to 19,392 more than AFL++, like
mutool clean, which was 13.7× more than AFL++. In terms of rate,
OSmart could find 106.6× more line coverage than AFL++, like
mutool convert. Overall, the option groups provided by OSmart
are very effective in improving program coverage.
Undocumented Option: To show the impacts of undocumented
options, we selected option groups containing these options for
fuzzing. ΔUn in Table 2 represents the unique line coverage increas-
ing from option groups including undocumented options compared

Table 3: Option-Aware Fuzzing Comparison on POWER’s

Dataset.

Program OSmart CarpetFuzz POWER ConfigFuzz AFL++-ARGV

avconv 3518.15 2442.59 2209.15* 2034.75 825.01
bison 1269.46 1133.14 1148.31* 813.15 154
cflow 604.87 565.8 642.79* 150.42 311.47
cjpeg 395.37 118.07 73.46* 60.8 75.92
djpeg 498.01 136.37 52.97* 35.88 57.87
dwarfdump 1771.19 1746.02 1376.34* 406.57 162.71
exiv2 2721.53 1123.37 1402.15* 1202.13 514.36
ffmpeg 5049.33 2460.78 2768.37* 2134.4 611.72
gm 631.38 515 566.98* 468.18 342.06
gs 9495.91 9306.35* 9447.74* * 3596.22
jasper 282.37 849.54 524.47* 479.08 42.34
mpg123 846.69 507.62 421.19* 742.34 122.82
mutool 2526.8 3429.59 48.33* 738.14 *
nasm 1023.07 911.89 898.18* * 321.13
objdump 833.67 1104.26 1012.09* 437.06 67.87
pdftohtml 3140.29 1680.15 1536.17* 1159.44 306.86
pdftopng 1655.06 1627.17 1592.4* 1011.66 43.02
pdftops 1536.5 1542.76 1528.5* 1361.76 34.02
pngfix 192.94 200.99 210* 300.51 48.43
pspp 2112.26 1080.37* 1021.12* 1859.03 *
readelf 524.25 428.78 460.36* 354.48 26.89
size 423.3 310.82 428.1* 234.04 39.37
tiff2pdf 722.7 717.63 661.9* 408.6 26.27
tiff2ps 505.01 414.55 376.28* 378.31 20.5
tiffinfo 399.1 388.3 331.87* 336.43 14.8
vim 4317.71 4705.29 4279.16* 4431.08 1322
xmlcatalog 928.75 803.89 748.26* 256.69 18.31
xmllint 855.63 1194.99 1467.75* 1034.99 53.84
xmlwf 286.44 198.38 160.57* 35.78 118.67
yara 422.08 272.53 407.62* 776.08 199.34
Total 49489.82 41916.99 37802.58 23641.78 9477.82

The numbers mean the average numbers of coverage edges across
all test cases [49]. We put the full data in https://github.com/osmart-
source/osmartsource/tree/main/compare-tables. * means we failed to compile. N*
means we reused the results [49] due to compilation errors.

with AFL++. In total, we obtained 12,833 line coverage from undoc-
umented options for 36 programs. The number of line coverage
was 4.45% of AFL++ and 11.06% of the sum of ΔOSmart. And the
most coverage could reach 2,411, equivalent to 24.63% of AFL++.
The coverage achieved by undocumented options shows that these
options, although not documented in the help documentation, can
make the program execute unique paths and cover more code and
discover potential bugs.

6.4.2 Option-Aware Fuzzing Comparisons. In order to eval-
uate whether white-box option dependency group could help the
option-aware fuzzers have a better performance, we compared OS-
mart with the state-of-the-art option-aware fuzzer CarpetFuzz.
We evaluated CarpetFuzz on OSmart’s benchmark, and used the
same programs and seeds with OSmart. To keep the fairness, each
program was fuzzed by CarpetFuzz for 48 hours and repeated 5
times. The results can be seen in Table 2. ΔCarpet represents the
unique code coverage of CarpetFuzz more than AFL++.

In terms of total line coverage, OSmart was 31.08 × more than
CarpetFuzz. And there were several programs that CarpetFuzz
could not apply to our dataset. If only comparing the programs that
CarpetFuzz had coverage results, OSmart had 12355 new coverage
and it was 3.3 𝑡𝑖𝑚𝑒𝑠 of CarpetFuzz. Although it generated more
option groups, most of them could not increase code coverage.
In total, for 17 programs, the coverage of OSmart was greater
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than that of CarpetFuzz, and for the remaining 6 programs, they
had similar coverage to that of CarpetFuzz. By manual analysis,
we found that if options were not widely used, randomly picking
options through N-wise testing used by CarpetFuzz could achieve
better results.

6.4.3 Comparisons on POWER’s dataset. We also compared
OSmart with other state-of-the-art option fuzzers on the public
benchmark released by POWER [28].We reproduce CarpetFuzz [49]
and ConfigFuzz [52, 53] based on the open-sourced code or imple-
mentation details described in their papers. For POWER [28], due to
the lack of detailed information, we directly reused the results from
the manuscript [49]. For AFL++-ARGV [22], the options and their
parameters in the official documents were manually extracted as
a dictionary to assist its execution. To keep fairness, we ran each
fuzzer for 24 hours and repeated it 5 times. The results can be seen
in Table 3.

Totally, for 20 of 30 (66.7%) programs, OSmart found new paths
more than other option-aware fuzzers. Note that for the cjpeg, djpeg,
exiv2, ffmpeg, and pdftohtml, OSmart could unveil twice the cover-
age compared to other fuzzers. For the other ten programs, OSmart
did not perform as well as the other fuzzers. By manual analysis,
we found that if options were not widely used together in the pro-
gram, randomly choosing options could achieve better results. In
addition, we also noticed that AFL++-ARGV did not outperform other
fuzzers in all cases, demonstrating the inefficiency of option- and
input-undifferentiated mutation.

6.5 Bug Detection and Lessons

6.5.1 Bug Details. OSmart discovered 51 new security bugs,
including 35 highly exploitable bugs, i.e., 8 stack overflows, 14 heap
overflows, 4 global overflows, and 9 UAFs. In particular, 33 new
bugs were detected by the input-mutation strategy, including 25
high exploitable bugs, and 18 new bugs were detected by the option-
mutation strategy, including 10 high exploitable ones. Besides, while
45 (88%) bugs could be triggered with no more than three options,
there were still 6 bugs that could only be triggered with four or
more options.
Bugs Detected By CarpetFuzz. To demonstrate the effectiveness
of bug detection, we also used the CarpetFuzz to detect the bugs on
our dataset. Generally, CarpetFuzz could only find 10 bugs in total,
and 5 of them were the same as the ones detected by OSmart as
they used the same option combinations to fuzz the same programs.
Besides, we also compared the time of discovering the same five
bugs found by both OSmart and CarpetFuzz. Totally, OSmart took
226.2s, and CarpetFuzz took 1117.6s. In addition, we also manually
confirmed the reason for the other 5 bugs that could only be detected
by CarpetFuzz. It turned out to be the failure of option extraction
due to the false negatives described in §6.2.3.
Bugs Triggered By Undocumented Options. Unexpectedly, OS-
mart detected 4 security bugs (2 stack overflows and 1 UAF and
1 FPE) involved with undocumented options. CarpetFuzz did not
unveil these bugs and these bugs could not be found by other option-
aware fuzzing works that relied on the official documents [28, 49,
52, 53]. Among these bugs, two bugs were triggered by one un-
documented option with another documented one, one bug was

triggered by one undocumented option with three documented
options, and one bug was triggered by four undocumented options.

6.5.2 Bug Lessons. Here we list all the new bugs details in Ta-
ble 4, which have been introduced in §6.5. Moreover, by manually
analyzing the root causes of these bugs, we present some valuable
lessons learned from the option-related security bugs. And we will
mainly describe three kinds of Buffer-Overflow (BO) bugs and one
kind of UAF bug detected by our tool.
BO-1. These bugs usually exist in the code blocks that can only be
reached through a specific option or option group. And they also
need some long-enough input data to overflow the target buffers.
For example, we detected such a buffer overflow within the bsdcpio
program, which needed four options to satisfy all the path condi-
tions to reach the vulnerable code. Then, when providing long-
enough input data, a stack overflow would be triggered. It is noted
that one of the four options is undocumented in the help messages.
BO-2. These bugs can be triggered by a specific option and a long-
enough option values which will be finally filled into a small buffer.
For example, our tool detected such a bug in the makeswf program,
in which both of two options, “-I” and “-D”, could append a 1023-
byte string into the same 1024-character buffer. As a result, when
the two options with two long-enough strings were provided in
the program, there would be a global overflow.
BO-3. These bugs are very special as they can be triggered only by
providing the same option many times without any extra data. For
example, our tool detected such a bug in the tiffcrop program, in
which a 10-character buffer index would be automatically increased
whenever one of four specific options was provided. Consequently,
when more than 10 such options were provided, a buffer overflow
would occur. It is also worth noting that these four options are also
undocumented in the help messages.
UAF-1. For all the UAF bugs found by OSmart, the main reason is
the same, i.e., an extra free is invoked by a specific option or option
group. For example, our tool detected such a bug in the img2sixel
program, in which the “-B” option enabled a code block containing
an extra free invocation. Then before the program existed, normal
resource deallocation was invoked, and the freed object pointer
would be used again. Besides, our tool also detected another similar
bug in the w3m program, in which the “-halfload” option led to a
premature free, and the program would then use the pointer again
before it existed. It is noted that the above “-halfload” option is also
undocumented in the help messages.

7 Discussion and Future Works

Symbolic Execution. Theoretically, symbolic execution [4, 9, 10,
12, 39, 40, 43] can also be used to extract program options for
the simple parsing logic, which relies on the string comparison.
However, when applied to real-world programs, especially for the
ones parsing options by the getopt(), we were unable to obtain any
result in hours. Nonetheless, we will try to combine the results
from OSmart with the program analysis assisted fuzzing works [6,
41, 46, 51] in our future work.
Fine-grained Static Analysis. We have adopted a coarse-grained
way to handle indirect functions, resulting in imprecise results
to option grouping. A fine-grained approach to solving function
pointers will be our future work, for example, integrating existing
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function pointer identification methods, such as MLTA [32], to
obtain the targets of function pointers for subsequent analysis.
Besides, to properly initialize the value of options, we can extend
OSmart with some static value analysis [47] in our future work.
Applicability of LST Rule.While OSmart can automatically ex-
tract program options on most of our evaluated programs, it still
cannot handle the parsing across multiple functions or is processed
implicitly, i.e., the exact parsing code is not presented in the pro-
gram. As our future work, we will try to extend the rule to cover
these code patterns and also apply it to other kinds of options, e.g.,
the ones contained in the configure files.
Conflict Relationship. We take heuristics based on code behavior
to identify conflict option groups, but this causes false positives
and the results are not minimized. Adding dynamic methods to
strengthen the identification, such as parsing output messages or
detecting early exits, is left as our future work.
Binary Program. Considering the difficulty in constructing ASTs
and the lack of symbolic information, we cannot directly apply
OSmart to binaries. Proposing heuristic rules to extract options
and building an option impact graph from binary programs is also
our main future work.

8 Related Work

8.1 Option-Aware Fuzzing

Fuzzing [3, 6, 11, 20, 21, 23, 29, 33, 37, 38, 41, 46], has been proven
an effective method to discover security vulnerabilities. COVER-
SET [42] has pointed out that it is a possible direction to infer com-
mand line options and handle dependent arguments for fuzzing.
CrFuzz [45] tries to enumerate option combinations, which can
improve the efficiency of fuzzing. However, it only focuses on input
mutation. POWER [28] designs a configuration relevance metric
to select option combinations. However, it does not mutate the
options. CarpetFuzz [49] adopts NLP techniques to automatically
identify the dependency and conflict relationships between options
in the help document and apply these relationships to fuzzing. How-
ever, it can not solve the undocumented option problem. Config-
Fuzz [52, 53] picks options that are not mutually exclusive, specifies
the type and range of option values, and mutates option values and
program inputs. However, these works select option configurations
from the official documentation, but we find that the official docu-
mentation has fewer options than the program defined. In addition,
the works [2, 22] mutate options and input indiscriminately without
the help of program documentation. However, it wastes much time
in generating a valid option. OSmart can automatically extract
options and infer groups, and supports two mutation strategies and
missed options.

8.2 Bug Detection with Property Graph

There have been several works proposed to detect vulnerabilities
with static graph-based analysis [7, 16, 30]. CPG [16] combines
AST, PDG, and CFG to construct code property graphs. It proposes
practical traversal methods on the graph and detects security vul-
nerabilities. However, it does not support inter-procedural analysis.
Backes et al. [7] apply CPG to PHP programs and develop a tool
named “phpjoern” [34]. ODGEN [30] extends the CPG with object-
level data dependencies to detect Node.js bugs. CHKPLUG [44]

combines different languages (JavaScript, HTML, PHP, and SQL)
as a cross language code property graph structure, tracks the data
flows and detects GDPR (General Data Protection Regulation) vio-
lations in WordPress plugins. CPGVA [50]utilizes the code property
graph to model code lines as features and seeds them to deep learn-
ing [27] to discover source code vulnerabilities. Duan et al. [15]
extract semantic features from the code property graph and train
network using BiLSTM [54] and attentionmechanism [48] andmine
the vulnerabilities in the target source program. These works are
based on graph indexing and traversals to find bugs directly from
the graph. While the concept of OFG is inspired by CPG, OSmart
uses inter-procedural analysis within the whole program’s ASTs
and PDGs and infers reasonable potential option groups, which are
then used to improve program fuzzing.

9 Conclusion

We propose OSmart to automatically extract options and reason-
ably infer relationships within them. OSmart incorporates several
practical techniques to build option impact graphs, which plays an
important role in our whitebox approach. We prototype OSmart
and evaluate it with 56 real-world programs. The experimental
results show that OSmart is effective and practical in automatically
extracting options and inferring option groups to improve program
security.
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A Bug Finding

The bugs found by OSmart are listed in Table 4.

B Graph Traversals

Filter Traversal. We define 𝑇𝑉 (𝑘 :𝑠 ) to select the specific nodes
whose value of 𝑘 is 𝑠 from the node set 𝑉 .

𝑇𝑉 (𝑘 :𝑠 ) = {𝑣 |𝑣 ∈ 𝑉 && 𝜇 (𝑣𝑐𝑢𝑟 , 𝑘) = 𝑠)}

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://en.wikipedia.org/wiki/Getopt
https://www.llvm.org
https://www.llvm.org
https://doi.org/10.1145/24039.24041
https://allenai.org/allennlp
https://www.gnu.org/software/libc/manual/html_node/Getopt-Long-Options.html
https://www.gnu.org/software/libc/manual/html_node/Getopt-Long-Options.html
https://github.com/google/AFL/tree/master/experimental/argv_fuzzing
https://github.com/google/AFL/tree/master/experimental/argv_fuzzing
https://github.com/google/syzkaller/
https://joern.io
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/3597503.3623315
https://doi.org/10.1145/3597503.3623315
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/621
https://github.com/libjpeg-turbo/libjpeg-turbo/issues/621
https://github.com/malteskoruppa/phpjoern
https://github.com/netwide-assembler/nasm
https://github.com/netwide-assembler/nasm
https://www.nltk.org/index.html
https://doi.org/10.1109/SP.2018.00056
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://doi.org/10.1109/SP.2010.26
https://www.ndss-symposium.org/ndss-paper/chkplug-checking-gdpr-compliance-of-wordpress-plugins-via-cross-language-code-property-graph/
https://www.ndss-symposium.org/ndss-paper/chkplug-checking-gdpr-compliance-of-wordpress-plugins-via-cross-language-code-property-graph/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1145/2892208.2892235
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICAIT.2018.8686548
https://doi.org/10.1109/ICAIT.2018.8686548
https://doi.org/10.1145/3580597
https://doi.org/10.18653/V1/P16-2034


OSmart: Whitebox Program Option Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: Vulnerabilities discovered by OSmart.

RED represents bugs triggered by undocumented options.

UAF=Use After Free, SEGV=Segmentation Violation,

NPD=Null Pointer Dereference, FPE=Floating Point Excep-

tion.

Strategy Program Status Type OptNum

gdb confirm(issue-30176) Memory Leak 1
gdb confirm(issue-30322) Memory Leak 1
gdb submit(issue-30323) Heap Overflow 2
gdb submit(issue-30638) UAF 1
gdb submit(issue-30639) Stack Overflow 1
gdb fixed(CVE-2023-39129) UAF 1
gdb fixed(CVE-2023-39130) Heap Overflow 1
gdb submit(issue-30667) Global Overflow 1
gdb submit(issue-30668) UAF 1
gprof fixed(issue-30324) SEGV 3
gprof fixed(issue-30657) Heap Overflow 1
makeswf submit(CVE-2023-31978) UAF 1
phpdbg fixed(issue-10715) Heap Overflow 1
php fixed(issue-9709) NPD 2
catdoc submit(CVE-2023-31979) Global Overflow 1
img2sixel submit(CVE-2023-31980) FPE 1
nidsasm submit(issue-3392856) Stack Overflow 3
sngrep fixed(CVE-2023-31981) Stack Overflow 3
sngrep fixed(CVE-2023-31982) Heap Overflow 3
sngrep fixed(CVE-2023-36192) Heap Overflow 2
yasm submit(CVE-2023-30402) Heap Overflow 3
yasm submit(CVE-2023-31973) UAF 3
yasm submit(CVE-2023-31974) UAF 3
yasm submit(CVE-2023-31972) UAF 3
yasm submit(CVE-2023-31975) Memory Leak 1
tiffcrop submit(issue-590) Heap Overflow 2
tiffcrop submit(issue-593) Heap Overflow 9
tiffcrop submit(issue-594) Heap Overflow 9
tiffcrop submit(issue-595) Heap Overflow 9
w3m confirm(issue-274) UAF 2
bsdcpio fixed(issue-1934) Stack Overflow 4
bsdcpio fixed(issue-1935) SEGV 4

fix-option

gifsicle confirm(issue-193) FPE 2
makeswf submit(CVE-2023-31977) Stack Overflow 2
makeswf submit(CVE-2023-31976) Stack Overflow 2
phpdbg fixed(issue-9709) Memory Leak 1
jhead fixed(issue-55) Stack Overflow 1
jhead fixed(issue-54) SEGV 1
img2sixel fixed(issue-65) Double Free 1
img2sixel submit(issue-174) SEGV 1
tiffcrop fixed(issue-450) Stack Overflow 4
fax2ps fixed(issue-475) Heap Overflow 1
qemu-edid fixed(issue-1249) FPE 1
qemu-img fixed(issue-1629) Heap Overflow 1
gifsicle fixed(CVE-2023-36193) Heap Overflow 1
htdbm submit(issue-66637) SEGV 2
htdbm submit(issue-66638) SEGV 1
htdbm submit(issue-66639) SEGV 1
sqlite3 fixed(CVE-2023-36191) SEGV 1
catdoc submit(issue-10) Global Overflow 2

fix-input

cflow fixed(CVE-2023-6031) Global Overflow 2

Predecessor and Successor Traversals. We define the following
predecessor and successor traversals to visit all predecessor and
successor nodes within a property graph for the current visiting
node, 𝑣𝑐𝑢𝑟 .

𝑇𝑃𝑟𝑒 ({𝑣𝑐𝑢𝑟 }) = {𝑣𝑝𝑟𝑒 | (𝑣𝑝𝑟𝑒 , 𝑣𝑐𝑢𝑟 ) ∈ 𝐸}
𝑇𝑆𝑢𝑐𝑐 ({𝑣𝑐𝑢𝑟 }) = {𝑣𝑠𝑢𝑐𝑐 | (𝑣𝑐𝑢𝑟 , 𝑣𝑠𝑢𝑐𝑐 ) ∈ 𝐸}

Impact Traversal. We define the impact traversal 𝑇𝐼 to visit all
paths starting from a specific node, e.g., the option node. In fact,
this recursive definition is inspired by the Traversal TNODE defined
in the work [16], which was used to identify all the AST child nodes
of any root node.

𝑇𝐼 ({𝑣𝑐𝑢𝑟 }) =
⋃

𝑣∈𝑇𝑆𝑢𝑐𝑐 ({𝑣𝑐𝑢𝑟 })

©­«𝑣 ∪ ©­«
⋃

𝑣′∈𝑇𝑆𝑢𝑐𝑐 ({𝑣})
𝑇𝐼 ({𝑣′ })

ª®¬ª®¬
Inspired by the work [16], we also extend predecessor and suc-

cessor traversals by using edge label 𝑟 and attributes 𝑘 :𝑠 , i.e., 𝑇 𝑟
𝑃𝑟𝑒

,
𝑇
𝑟 [𝑘 :𝑠 ]
𝑃𝑟𝑒

,𝑇 𝑟
𝑆𝑢𝑐𝑐

and𝑇 𝑟 [𝑘 :𝑠 ]
𝑆𝑢𝑐𝑐

. Then, they can be used to filter the nodes
by confining the edge 𝑒 , i.e., satisfying 𝜆(𝑒) = 𝑟 or 𝜇 (𝑒, 𝑘) = 𝑠 .
Similarly, we also extend the impact traversal 𝑇𝐼 with the 𝑇 𝑟

𝐼
and

𝑇
𝑟 [𝑘 :𝑠 ]
𝐼

.
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