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Abstract— Recent years have seen increased attention to deep
learning-based vulnerability detection frameworks that leverage
neural networks to identify vulnerability patterns. Considerable
efforts have been made; still, existing approaches are less ac-
curate in practice. Prior works fail to comprehensively capture
semantics from source code or adopt the appropriate design of
neural networks. This paper presents SEVULDET, a Semantics-
Enhanced learnable Vulnerability Detector that can accurately
pinpoint vulnerability patterns by preserving path semantics into
gadgets and learning from flexible-length codes. SEVULDET has
two main characteristics: (i) SEVULDET employs a path-sensitive
code slicing approach to extract sufficient path semantics and
control flow logic into code gadgets. (ii) by inserting a spatial
pyramidal pooling layer into the Convolutional Neural Network
(CNN) with a well-designed multilayer attention mechanism, SE-
VULDET can handle gadgets of flexible-length semantics to avoid
semantics loss incurred by traditional truncating or padding
operations, and thus learn more potential vulnerability patterns.
Comprehensive experimental results show that SEVULDET sig-
nificantly outperforms classical static approaches and excels with
state-of-the-art deep learning-based solutions by improving F1-
measure to roughly 94.5%. Particularly, the elaborate design of
the SEVULDET architecture helps us identify more real-world
vulnerabilities than existing technologies.

Index Terms—vulnerability detection, deep learning, seman-
tics, program analysis, program representation.

I. INTRODUCTION

Software vulnerabilities are prevailing in cyberspace and

prompt various system attacks [1], [2] and data breaches [3].

The open-source code makes the vulnerabilities even more

widespread. Classic static detection techniques [4]–[7] which

are less dependent on the running environment of the target

have been widely adopted in practice. However, they also

have the primary drawback: relying on experts to define

vulnerability characteristics, which requires intense manual

labor but has unstable effectiveness.

Hereby deep learning-based detection frameworks have at-

tracted a wealth of research efforts, which reduce both time

cost and required expert knowledge by recognizing vulner-

ability patterns [8]–[12]. Nevertheless, with recent progress

made in this line of research, learning more code semantics

from source codes remains a major obstacle to making deep

learning-based frameworks more practical.

(�): Corresponding authors

One reason is the challenges in code preprocessing algo-

rithms connecting code fragments to path semantics. Recently,

researchers have preferred the code gadget slicing approach,

which divides the program into groups of interrelated state-

ments to extract as much semantics as possible (not only
the correct code structures but the thorough logic of state-
ments [13]). Considering that vulnerabilities are not limited

to a single function or file, slicing at the fine-grained program

level is a preferred solution for preprocessing [9]–[12]. How-

ever, we notice that existing code gadget fragments are simply

stacks of dependent statements that lack proper contextual

path relationships between statements and more details on

dependencies, which causes semantics loss. Divergent source

codes can even yield the same code gadget fragments because

of incomplete path information. Whatever the detection result,

the detector will always misjudge some source codes corre-

sponding to semantically insufficient fragments.

The other reason for the difficulty in deeply learning se-

mantics is the lack of proper network architecture to learning

semantic features from code fragments. Recurrent Neural Net-

works (RNNs), which excel at learning contextual information,

are widely used for vulnerabilities detection. It can help find

some vulnerabilities, but its predefined time steps that fix the

length of the input sequence make it not a satisfactory solution.

For over-length codes, fixed-length may result in discarding a

portion of the code gadget with critical semantics; for under-

length codes, fixed-length may introduce irrelevant semantics

because of the padding bits. Both cases can affect how the

network operates in terms of performance and accuracy [14].

Thus, network structures that drop and scramble semantics are

very tricky to confront with real-world software.

To overcome these obstacles, we propose a path-sensitive

gadget generating algorithm and a CNN with a spatial pyramid

pooling layer which can preserve entire semantic information

in the gadgets. Then we make a further step on utilizing a

multilayer attention mechanism to help the CNN analyze and

learn semantic information better.

The main contributions are as follows.

First, we propose a code semantic enhancement algorithm

based on path-sensitive program slicing method. Concretely,

an extra step is added to the code gadget slicing method

to ensure that more path semantics can be retained during
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the slicing process. The algorithm has been implemented

and evaluated in the Software Assurance Reference Dataset

(SARD) project [15], the National Vulnerability Dataset

(NVD) project [16], and real-world software.

Second, a high-precision network architecture is proposed to

eliminate the limitation of RNNs on code length. Specifically,

CNN with a spatial pyramid pooling layer is tailored for code

vulnerability detection of flexible length, which addresses the

semantic loss problem on the network. In addition, a mul-

tilayer attention mechanism is carefully designed to capture

the bounded hierarchical structure of source codes, so as to

identify relatively interesting tokens and crucial semantics for

high-precision vulnerability detection.

Finally, we implement the detection framework named

SEVULDET1 (Semantics-Enhanced learnable Vulnerability

Detector) based on the above designs and conduct extensive

experiments to demonstrate effectiveness of the framework.

Compared with state-of-the-art solutions, SEVULDET im-

proves F1-measure up to 94.5%. Furthermore, SEVULDET

successfully identified one previously unreported vulnerability

on Xen software products.

The rest of the paper is organized as follows. Section II

presents the background and motivation. Section III discusses

the design of SEVULDET. Section IV shows our experimental

evaluation of SEVULDET and the results. Section V describes

the related work. Finally, Section VI discusses the conclusions

of SEVULDET.

II. BACKGROUND AND MOTIVATION

In this section, we first provide some preliminary guiding

principles for deep learning networks based vulnerability de-

tection frameworks. Then we illustrate an example showing

the drawbacks of existing frameworks, inspiring us to redesign

the solution. Finally, we conclude the main drawback, seman-

tic loss, of existing vulnerability detection frameworks that

negatively impact on vulnerability detection.

A. Definitions

We declare the following definitions for precise description.

Definition 1 (program, statement, token): A program P
consists of a series of ordered statements s1, ..., sε, which

denoted by P = {s1, ..., sε}. A statement sw ( 1 � w � ε)
consists of a series of ordered tokens tw1

, ..., twm
, which

denoted by sw = {tw1 , ..., twm}. A token twη ( 1 � η � m )

is a particular word in sw which could be a function identifier,

variable identifier, constant, operator, keyword, etc.

Definition 2 (data-dependence [17]): For a program P =
{s1, ..., sε}, two statements sα,sβ (α �= β) in P , and a variable

identifier token ti in sα, statement sβ is said to be data-

dependence on sα when ti is also used in sβ .

Definition 3 (control-dependence [17]): For two state-

ments sα,sβ (α �= β) in a program P = {s1, ..., sε}, statement

sβ is said to has control dependence with sα when the

execution outcome of sα affects whether sβ will be executed

or not.

1https://github.com/SEVulDet/SEVulDet

Definition 4 (special token): Given a program P =
{s1, ..., sε}, and a statement sw (1 � w � ε) composed of

m special tokens {tw1
, ..., twm

}, the special token twn
(1 �

n � m) is a token that matches the syntactic characteristics

of library functions calls, arrays usage, pointers usage, and

expression in statement sw.

Definition 5 (code gadget [9]): Given a program P =
{s1, ..., sε}, and a statement sw (1 � w � ε) composed of m
special tokens {tw1

, ..., twm
}, a code gadget Cwη

(1 � η � m)

generated from the token twη consists of multiple ordered

statements that have recursive data-dependence or control-

dependence on sw.

Definition 6 (PDG [17]): Given a program P = {s1, ..., sε},

and a statement sw (1 � w � ε) containing m library/API

function calls {fw1
, ..., fwm

}, a Program Dependency Graphs

(PDG) corresponding to function call fwη
is a directed graph

Gwη
= (Vwη

, Ewη
), where Vwη

is a set of statements and

control predicates and Ewη is a set of direct edges that

represent the dependency.

B. Preliminaries

The source code contains rich semantics. But parts of the

vulnerability semantics will be lost if we translate the source

code into LLVM IR [18]. We therefore choose optimization

algorithms in neural networks (e.g. gradient descent ) to

adapt the network parameters and learn potentially vulnerable

features from the source code dataset. Recent efforts [13] have

shown that this technique can effectively recognize vulnera-

bility patterns from source code with the help of two critical

procedures: code preprocessing and network constructing.

The purpose of code preprocessing is to comprehensively

extract the semantics of vulnerability patterns, which can also

help the network learn critical code. The commonly employed

method is the program analysis technique, which abstracts the

necessary syntaxes and semantics from the program. Previous

methods processed source code into several fragments by pre-

processing, such as files [19], functions [8], git commits [20],

and code gadgets [9] assembled from interdependent state-

ments. The minimum granularity for detecting vulnerabilities

is the corresponding fragment.

An underlying principle for constructing a deep learning

network suitable for code vulnerability detection is the ability

of the network to learn contextual semantic features from

code fragments. RNNs can remember the information they

have processed and use it to influence future decisions [21],

becoming a popular frameworks for vulnerability detection.

In addition, the attention mechanism enables the neural net-

works to pay more attention to the input subsets (or features)

to reduce the reliance on external information, helping capture

the internal correlation of inputs [22]. Recent works [23], [24]

have theoretically demonstrated the advantages of attention

networks over RNNs on bounded hierarchical language pro-

cessing. Hereby we intend to design attention mechanisms to

capture essential tokens and their combinatorial patterns in the

source codes, and further visualize the weights to analyze the

rationale for the inference of the network [25].
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  1:  #include <stdio.h>
  2:  #include <string.h>
  3:  int main() {
  4:          char data[9] = "AAAAAAAA";
  5:          data[8] = '\0';
  6:          char dest[5] = "";
  7:          int n;
  8:          scanf("%d", &n);
  9:          if(n<=4 && n>0) {
10:                  printf("Right range!\n");
11:                  strncpy(dest, data, n);
12:                  dest[n] = '\0';
13:          }else{
14:                  printf("Error range!\n");
15:          }
16:          return 0;
17:  }

  3:  int main() 
  4:  char data[9] = "AAAAAAAA";
  5:  data[8] = '\0';
  6:  char dest[5] = "";
  7:  int n;
  8:  scanf("%d", &n);
  9:  if(n<=4 && n>0)
11:  strncpy(dest, data, n);     :13
12:  dest[n] = '\0';     :14

dest
data

n

  1:  #include <stdio.h>
  2:  #include <string.h>
  3:  int main() {
  4:          char data[9] = "AAAAAAAA";
  5:          data[8] = '\0';
  6:          char dest[5] = "";
  7:          int n;
  8:          scanf("%d", &n);
  9:          if(n<=4 && n>0) {
10:                  printf("Right range!\n");
11:          }else{
12:                  printf("Error range!\n");
13:                  strncpy(dest, data, n);
14:                  dest[n] = '\0';
15:          }
16:          return 0;
17:  }

121163
11543

12119873

dest
data

141363
13543

14139

);

   
         

Vulnerable  Non-
vulnerablee

Network result

Step I

Step II Step II
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TP=1, TN=0,
FP=1, FN=0.

TP=0, TN=1,
FP=0, FN=1.

Non-vulnerable codes Vulnerable codes

873n

Fig. 1. Using the existing code gadget generating method, correct codes at left and vulnerable codes at right will extract identical code gadgets (Step III).
Whether the detection result for these two cases is vulnerable or non-vulnerable, the accuracy keeps equal to 0.5, which is useless for vulnerability detection.

C. Motivating Example
Although code gadget has been traditionally used in learn-

able vulnerability detection detectors [9], [10], it has a critical

problem - path insensitive. An example in Fig. 1 depicts the

drawback of program processing in previous works. The entire

detection framework input is a series of source codes with and

without vulnerability labels. The highlighted function strncpy
in Fig. 1 is one of the library functions in the C standard library

that copies a string of a specified length to the character array.

All three dependents tokens of strncpy (i.e., dest, data
and n) are extracted with their forward and backward data-

dependence statements (Step II of Fig. 1), forming multiple

forward and backward slices [9], e.g., dest 3�6�11�12.

Subsequently, all statements are broken up and reorganized

according to both the function where they are located and the

calling relationship between the functions (Step III of Fig. 1).

Notably, the statements in the source code on the left of

Fig. 1 are not vulnerable. It is obvious that the size of n is

judged before the function strncpy is called, and the strncpy
is dependent on the valid (i.e., not any) size of n, which

would prevent array index out of bounds error. But another

code in the right of Fig. 1, where the n used to address items

in dest exceeds the allowed value, is obviously vulnerable. As

shown in Fig.1, the slicing methods in previous works generate

identical code gadgets at Step III from both non-vulnerable

and vulnerable codes. Identical code gadgets mean identical

network classification results. In the case where the model

classification result is vulnerable, TP = 1, TN = 0, FP =

1, FN = 0. In the case where the model classification result

is non-vulnerable, TP = 0, TN = 1, FP = 0, FN = 1. So

when the network classify codes similar to the example, the

accuracy would always be 50% which has no contribute to

vulnerability detection.

D. Semantic Loss
Path-insensitive code gadget. A path transformation of a

statement causes changes in the control range in which the

statement is located, but code gadgets in existing frameworks

do not track them. The reasons are in the following aspects: (i)

control-dependence is a rough description of the relationship

between two statements (i.e., whether there is a dependency)

and does not indicate the path to the statement (i.e., dependent

on legal or illegal values); (ii) Step III is a process of

reorganizing the order of statements, where brute stacking may

cause statements that are not in the same control range to be

directly adjacent to each other, thus creating path insensitive.

One solution is to identify the control range of each control

statement, match and record all the ranges that can be passed to

the statements in slices, and thus save the positive or negative

dependencies between statements into the path-sensitive code

gadgets.

Definition 7 (path-sensitive code gadget): Given a pro-

gram P = {s1, ..., sε}, and a statements sw (1 � w � ε)
composed of m special tokens {tw1

, ..., twm
}, a path-sensitive

code gadget Cwη
(1 � η � m) generated from token twη

consists of multiple statements along with call sequence. Each

of these statements either recursively depends on sw or is a

control scope statement on the path to twη
.

Fixed token length. RNNs are the most popular vulner-

ability detection models because they can handle context

and text classification. However, they process the input brute

force: deletion or padding. The time steps of RNNs are

predefined, and only one token can be fed to each time step.

Hence the length of token contained in a code gadget must

be predefined and fixed. The vector is padded with zeros

during the embedding phase if tokens are not long enough or

truncated if tokens are longer than the predetermined length.

The cropped region may contain part of a bug semantics, and

the padded region may import distortion [14]. A big enough

predefined length may solve the interference of short sequence

padding, but not the truncation of ultra-long real software

codes as overlong input brings significant time and energy

costs. Avoiding dropping extra-long data with a sizeable

predefined length would make the standard length data incur

extra overhead and interference.

Definition 8 (fixed-length code gadget): For an RNN-
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Input

Step I: Generating  
path-sensitive code  
gadgets  for training  

programs

Step II: Labeling  the  
code  gadgets

Step III: Normalizing   
the  code  gadgets

18:  static void fun1 (int var1){
19:      char * var2;
22:      char var3[100] = L"";
23:      var2 = var3;
40:      if(var1==5){
43:          wcscpy(var2, L"test");
50:      }else{}
72:  }  

Step IV: Embedding code 
gadgets with token attention

Step V: Training vulnerability detection model

F
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Mc Ms

Output

SPP

Step I: Generating  path-
sensitive code  gadgets  

for target programs
Step II: Normalizing   

the  code  gadgets
Step III: Embedding 
code gadgets with 
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vulnerability  detection  
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Code Gadgets Generation
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void
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fixed-lengthflexible-length

Network Architecture

Input
(a) Training phase

(b) Detection phase

Code Gadgets Generation Network Architecture

Output
Spatial Pyramid PoolMultilayer Attention

F

Fig. 2. Overview of SEVULDET. (a) Five steps to generate a trained model in the training phase. The details of slicing algorithm in Step I are shown
in Fig. 3. The improved spatial pyramid pooling (SPP) designed to handle flexible-length codes. The colored parts in Steps IV and V represent the weight
assignment of the multilayer attention mechanism. (b) Four steps to output vulnerability type and line number (if exists) in the detection phase.

based detection network Rτ with time step τ , given a code

gadget C containing υ tokens, which denoted by C =
{t1, t2, ..., tυ} , a fixed-length code gadget Cf generated by

C can be denoted by

Cf =

{ {t1, t2, ..., tτ} τ <= υ;
{t1, t2, ..., tυ, 0υ+1, ..., 0τ} τ > υ.

III. DESIGN OF SEVULDET

This section describes the design of SEVULDET, a deep

learning-based detector with a path-sensitive code gadget

generating algorithm and a neural network carefully designed

for high-accuracy detection of codes of flexible length. As

shown in Fig. 2, SEVULDET can be divided into two phases:

the training phase and the detection phase. At the training

phase, steps I through III save the necessary semantics and

syntax from the source code into path-sensitive code gadgets,

while steps IV and V learn potential vulnerability patterns.

Similarly, the detection phase is the same as the training phase,

except there is no step to label the code gadgets.

A. Technical Challenges

SEVULDET can semantically enhance the detection frame-

work from both code gadget processing and network design

perspectives to eliminate the semantic loss problem. However,

SEVULDET needs to address the following three thorny

technical challenges.

The first challenge is encapsulating the correct path in-

formation into the code gadget. The codes are divided into

blocks of statements by line breaks and curly brackets, and

the execution path is a long chain of successively executed

statements across these blocks. Therefore, SEVULDET needs

to collect all possible path semantics and select the necessary

paths to merge into the code gadgets at the right places to

preserve the control dependencies of the scope and statements

(i.e., statements in or out of range) into the code gadgets

further.

The other two challenges come from designing network

structures that preserve and learn semantics in path-sensitive

code gadgets as much as possible. Firstly, unlike the recent

advances in natural language processing [26] and computer

vision [27] that limit the input scale, we dedicate to replacing

the ordinary pooling layer in CNNs with the spatial pyramid

pooling to meet the requirements of flexible length for seman-

tics preserving. Secondly, concerning the limits in size and

depth of convolutional kernels, we need to improve CNNs to

enhance the semantic learning capabilities of code gadgets.

The implementation also faces some obstacles to be over-

come. First, we must address the semantics loss of previous

code gadgets-based works [9]–[11] by integrating the path-

sensitive algorithm and customized network structure. Mean-

while, the prototype system needs to be low-coupling to ensure

detection performance.

B. Path-sensitive Code Gadgets Generation

Existing gadgets generation methods are prone to semantic

loss, the procedure below extracts fine-grained path-sensitive

code gadgets involving rich semantic for a special token.

Step I: Generating path-sensitive code gadgets for the
corresponding function calls, expressions, arrays, and
pointers. Vulnerabilities often exhibit some syntactic features

in common, and SEVULDET focuses on vulnerabilities arising

from function calls, expressions, arrays, and pointers. For more

clarity, we have split Step I into four sub-steps in Fig. 3.

a) Step I.1: Generating Program Dependence Graphs:
We generate PDGs based on data-dependence and control-

dependence, facilitating the generation of path-sensitive code

gadgets with dependencies. Existing work [28] has given the

standard algorithm for generating PDGs, and we use the open-

source C/C++ code analysis tool Joern [29] to implement it.

The second column in Fig. 3 is the PDG derived from the

function in the sample program. We display the statement

corresponding to each node with the line number.

b) Step I.2: Identify four types of special tokens: Based

on manual inspection rules in Checkmark [4], SySeVR [11]

has designed four common types of vulnerabilities: library/API

function call, array usage, and pointer usage. We identify four
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  1:  void printMsg(char * msg) {
  2:          if(msg != NULL)
  3:                  printf("%s\n", msg);
  4:  }
  5:  void copyArray(bool status) {
  6:          char data[7] = "AAAAAA";
  7:          data[6] = '\0';
  8:          char dest[5] = "";
  9:          int n;
10:          scanf("%d", &n);
11:          if(!status){
12:              printf("Do nothing!\n");
13:          }
14:          else if(n<=4 && n>0){  
15:              printf("Wrong!\n");
16:          }
17:          else{
18:              printf("Right!\n");
19:              strncpy(dest, data, n);
20:              dest[n] = '\0';
21:          }
22:          printMsg(dest);
23:  }

5
6

7
9

10

8

11

12

1415

18

19

20

22
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2 3

strncpy data dest msg
619 8 1
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22
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11
14

19

20

22
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2 3

13
16

21

17

23

4

  5:  void copyArray(bool status) {
  6:          char data[7] = "AAAAAA";
  7:          data[6] = '\0';
  8:          char dest[5] = "";
  9:          int n;
10:          scanf("%d", &n);
11:          if(!status){
13:          }
14:          else if(n<=4 && n>0){  
16:          }
17:          else{
19:              strncpy(dest, data, n);
20:              dest[n] = '\0';
21:          }
22:          printMsg(dest);
23:  }
  1:  void printMsg(char * msg) {
  2:          if(msg != NULL)
  3:                  printf("%s\n", msg);
  4:  }

copyArray()
printMsg()

data-dependence
control-dependence

Program source code Step I.1: Genarating PDGs  &  
Step  I.2:  Identify special  tokens

Step I.3: Extraction 
of slices

Step I.4: Generating path-
sensitive code gadgets Path-sensitive code gadgets

Fig. 3. A path-sensitive code gadget generation process for strncpy (Node 19). Step I.4 is the critical step to abstract the path semantics. Node 17 is inserted
between 14 and 19, capturing a more detailed dependence. Nodes 4, 13, 16, 21, and 23 are saved as the endpoints of the path to the block for logical integrity.

special tokens (library/API function call (FC), array usage

(AU), pointer usage (PU), and arithmetic expression (AE))

listed in [11].

c) Step I.3: Extraction of the forward and backward
slices [10]: Since the vulnerability is a combination of several

dependent statements in the context, We consider extracting

the corresponding forward and backward slices for each spe-

cial token of PDG. One-way slices may lead to semantic

ambiguity or loss. The forward and backward slices are

obtained by abstracting the successors and precursors of the

special tokens in PDGs, respectively. It is worth pointing out

that data and control-dependence are used to generate slices

for two reasons: i) to find statements that are vulnerable to

attacks via data-dependence; and ii) to enrich the semantic

information via control-dependence, which in most cases can

mitigate the accuracy degradation caused by missing semantic.

The formal description of this step can be found at [10], and

we open-sourced the implementation.

d) Step I.4: Generating path-sensitive code gadgets:
Code gadget is the miniature set of semantics in which each

statement has dependencies. As indicated in the motivating

example, reconstructing statements in a stacked manner in

the absence of path information may result in two control

scopes not semantically linked overlapping. Furthermore, The

control-dependence between two statements is only a rough

description since the details and scope of the dependence are

not captured. Therefore, Step I.4 relies on a novel Algorithm

1 for path semantics extraction, resolving the problem of

semantic loss and accuracy reduction.

To identify all the path information, there are eight types

of control statements whose control range can be clearly

identified by algorithm 1: if, else if, else, for, while, do
while, switch and case. We define the nodes that match

the eight syntactic features as key nodes since there is a

precise control range starting here. We observe that the paths

of jump statements (e.g., ”goto” or ”setjmp/longjmp”) are

path-sensitive and can be represented by the forward and

backward slices, so these statements are not included in the

key nodes. The control range through which all dependencies

in the forward and backward slices pass is selected and saved

so that the path information in the code gadget becomes clear

and there is no overlap between the two control blocks due to

stacking. For example, lines 14 to 16 of the program in Fig. 2

are the control ranges corresponding to elseif , and lines 17

to 21 are the control ranges corresponding to else. Since the

latter contains the 19th statement, if lines 17 and 21 are not

kept in the code gadget, the execution path of strncpy will be

unclear, and the scope of elseif and else will overlap vaguely.

Here we list the implementation details of Algorithm 1

for path-sensitive code gadgets generation: a) generating the

corresponding abstract syntax tree for the program of interest

(Line 4) and identifying the key nodes that match the eight

syntax characteristics (Line 8); b) calculating the maximum

and minimum of row numbers in the subtree rooted by

a key node (Line 7-8); c) binding adjacent control ranges

with semantic relevance (Line 9-11) in special cases (e.g.,

if elseif and else, or switch and case); d) fixing the

wrong correspondence between the start and end nodes of the

control range with the help of the stack (Line 15-18); e) fine-

tuning the dependencies in the slices by inserting the control

ranges crossed by nodes in the slices and the bound control

ranges into the slices (Line 19-23); f) adjusting statement

relationships within functions according to line numbers and

between functions based on call relationships (Line 25-36).

Fig. 3 showcases how algorithm 1 works in Step I.4. The

if , elseif , and else in the code are captured as key nodes and

their control ranges are identified correspondingly. Since node

19 is within the range corresponding to else, the ranges of

all three nodes are preserved. Specifically, two cases arise:

nodes such as 4, 13, 16, 21, and 23 are inserted into the

graph as leaf nodes to complete the logic of the block; nodes

such as 17 need to be inserted in the middle of two nodes

to act as control dependency details. These improvements can

clearly identify the path to node 19 to resolve the problem of

statements depending on legal or illegal data in Fig. 1. Finally,

all nodes need to be adjusted at the function level to generate

the path-sensitive code gadget. It is worth note that the key

nodes here can be generalized to the eight control statements.
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Algorithm 1 Generating path-sensitive code gadgets (Step 1.4)

Input: A program P = {s1, ..., sε}; A syntax

characteristics set for eight control statements, Z =
{zif , zelseif , zelse, zfor, zwhile, zdowhile, zswitch, zcase};

A statement in program P , sw; A token generated by sw,

twη
; The slices corresponding to twη

, Lwη
;

Output: The code gadget corresponding to twη
, Cwη

;

1: F ← dividing P into a set of functions

2: for each function fi ∈ F do
3: Mwη ← ∅
4: Ai ← AbstractSyntaxTree(fi)
5: for each token tj ∈ Ai do
6: if tj matches zk in Z then
7: aij ← subtree of Ai with tj as root node

8: mcur ← {minimum in aij , maximum in aij}
9: if tj matches zelseif or zelse or zcase then

10: Binding mcur and mpre

11: end if
12: Mwη

← Mwη
∪mcur

13: end if
14: end for
15: Mst ← symbolic match via Stack

16: for control ranges ma ∈ Mwη
, mb ∈ Mst and

ma[0] = mb[0] do
17: ma[1] ← Max(ma[1], mb[1])
18: end for
19: for control range mq ∈ Mwη do
20: if there is a statement in slices Lwη

in mq then
21: Lwη

← Lwη
∪mq

22: end if
23: end for
24: ζwη,i ← ∅
25: for statements sλ, sμ appearing in Lwη do
26: if sμ is a successor node to sλ or line number of

sμ is less than sλ then
27: ζwη,i ← ζwη,i ∪ {sλ, sμ}
28: end if
29: end for
30: end for
31: Cwη

← ∅
32: for functions fυ , fω appearing in Lwη

do
33: if fυ calls fω then
34: Cwη ← Cwη ∪ {ζwη,υ, ζwη,ω}
35: end if
36: end for
37: return Cwη

Step II: Labeling the code gadgets. SEVULDET is a kind

of supervised learning, we need to obtain the source codes

with tags from the open-source datasets (SARD [15] and NVD

[16]) and label the corresponding code gadgets. Specifically,

a code gadget, heuristically generated from a vulnerable code,

is automatically marked as 1, potentially tagging some code

gadgets incorrectly. This is caused by the invulnerable state-

ments being the same as the vulnerable statements. We use the

k-fold cross-validation [30] to narrow down the check range

and then relabel it after manual judgment. Specifically, the

code gadget set is randomly divided into k groups. Training

and detection are repeated k times. During each time, one

group is selected as validation data for testing while the other

k − 1 groups are used for training. Samples with multiple

false-positive classifications need to be tested artificially for

the correctness of labels.

Step III: Normalizing the code gadgets. Custom function

and variable names do not affect the determination and genesis

of vulnerabilities and increase the burden of model learning.

Therefore, tokens that contain contextual semantic features

are embedded as vectors, and tokens that are susceptible to

programming conventions and other factors, such as function

and variable names, are normalized. Step III in Fig. 2(a)

shows that we rename a variable name or function name in

the program in a mapping style to a name in an ordered

set (i.e., {“var1”, “var2”, ...} and {“fun1”, “fun2”, ...}).

Subsequently, we remove the non-ASCII characters and leave

the macros, library/API function names, and constants intact.

C. Network Architecture Design

Latent vulnerabilities are generally associated with essential

tokens and their specific combinatorial patterns, e.g., the

case of Use-After-Free (UAF) vulnerability is induced by

some free pointers followed by assignments. Moreover, the

predefined time steps in the popular RNNs limit the length

of semantics that the network intends to learn and detect.

Therefore, we design a multilayer attention mechanism and

a spatial pyramid pooling (SPP) layer in the convolutional

neural network structure. The CNN with the SPP eliminates

predefined length restrictions of the code gadget in RNN-based

frameworks. Thanks to the attention network’s advantage of
dealing boundary layered languages [24], we carefully design
the multilayer attention mechanism for in-depth code learning
via capturing essential tokens and their combinatorial patterns
in the source codes. Note that the attention mentioned in this

paper is an adaptive deep neural network structure, which is

different from code attention [10], which is a collection of

statements that match expert-defined syntax characteristics.

Generally, the construction of the vulnerability detection

network consists of steps IV and V. In step IV, we use the

token attention to obtain the importance of tokens and assign

weights. In step V, we employ the attention mechanism on

both spatial and channel to capture the combined patterns of

tokens. The design of SPP successfully lifted the limitation of

the fixed network structure on the length of the code gadget.

Step IV: Embedding code gadgets with token attention.
Each path-sensitive code gadget needs to be encoded into a

vector via its symbolic representations. The primary challenge

the token embedding has to overcome is to identify the tokens

that contribute most to vulnerability detection since not every

token is equally essential to a vulnerability.

Hereby we use the pre-trained word2vec [31] model to

embed tokens as vectors and design token attention to learn

which tokens are helpful for detection. We illustrate the
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Fig. 4. Embedding code gadgets with attention. The colored part indicates
the feature map after being influenced by attention weights.

process in Fig. 4. Given code gadget C contains tokens T ,

and ti represents the i-th token in T . Firstly, we feed the

embedded token vector xi into a single-layer MLP to obtain

ui as a hidden representation of xi. Secondly, we train a

token-level context vector uw, which can be regarded as a

fixed attention query for context information. uw can learn

important contextual semantic features during training. We

calculate the similarity between ui and uw via dot product

to measure the importance of xi, and obtain a normalized

importance weight αi by the softmax function for weight

normalization. Finally, we weighted the tokens to get x̂i, which

is the embedding vector after being affected by the embedding

importance weight. The equations listed below are to get their

values for these symbols.

xi = word2vec(ti) (1)

ui = tanh (Wwxi + bw) (2)

αi =
exp

(
u�
i uw

)
∑

i exp
(
u�
i uw

) (3)

x̂i = αixi (4)

Step V: Training vulnerability detection model. In step

V, we carefully designed the second part of the multilayer

attention mechanism to learn interesting token combinatorial

patterns, which is composed of channel attention and spatial

attention. We construct a CNN with a built-in spatial pyramid

pooling layer, to alleviate the loss and distortion of vulnera-

bility features in path-sensitive code gadgets.

a) Channel Attention and Spatial Attention: In the model

training stage, as shown in Fig. 2(a), we also introduced the

attention mechanism. Specifically, we add channel attention

and spatial attention from the CBAM [32] to our network to

improve the performance of convolution for potential vulner-

ability pattern recognition. The channel attention focuses on

“what” is a meaningful input tensor, while the spatial attention

is focused on “where” as the most informative part, which

complements channel attention with the compressed channel

dimension of the input. The channel attention map Mc(F ) ∈
R

C×1×1 and the spatial attention map Ms(F ) ∈ R
1×H×W

can be formally expressed as following:

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F )))

= σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

)
(5)

Ms(F ) = σ
(
f7×7([AvgPool(F );MaxPool(F )])

)
= σ

(
f7×7

([
F s
avg;F

s
max

])) (6)

where F ∈ R
C×H×W is an intermediate feature map.

Spatial attention map Ms(F ) is created by connecting

these two feature maps and performing standard convolution

with a 7×7 convolution kernel. The Channel attention map

Mc(F ) is generated by putting these two into the shared

multilayer perceptrons (MLPs). Next, we aggregate the spatial

information of the feature maps by exploiting average pooling

and maximum pooling operations to generate average pooling

feature F c
avg and maximum pooling feature F c

max respectively.

We notice that the sequential alignment of the two modules

gives better results than parallel alignment. After obtaining

these two maps, according to Step V in Figure 2, for an

intermediate feature map F , we first compute the channel

attention to get F ′ and then calculate the spatial attention to

get F ′′ for F ′. The formal description of this process is:

F ′ = Mc(F )⊗ F (7)

F ′′ = Ms(F
′)⊗ F ′ (8)

where ⊗ denotes element-wise multiplication, σ denotes sig-

moid function, W0 ∈ R
C/r×C and W1 ∈ R

C×C/r are shared

MLP weights, and f7×7 represents a convolution operation

with the filter size of 7× 7.
b) Spatial Pyramid Pooling: A CNN consists of a convo-

lutional layer, pooling layer, and fully connected layer in turn.

The convolution operation calculates the result for any feature

map size, while the pooling and fully connected layers are

predefined fixed-size network structures. We carefully design

the SPP to pool the flexible-length convolutional output into

a fixed-length fully-connected layer input, thus the CNN can

adaptively process vectors of flexible length.

The SPP is performed on the feature map after a convolution

on the attention computation result. The structure of SPP for

flexible-length codes is shown in Fig. 2. We note that the code

is a sequence, with mutual information only in the dimension

of neighboring tokens. Therefore, we designed a convolution

kernel with the same width as the feature map for convolution

and output a sequence. We divide the one-dimensional feature

map into 4, 2, and 1 spatial bins. In each spatial bin, we

perform spatial pyramid pooling on the response of each filter

and then splice them into a fixed-length vector, which is the

input to the dense layer. More specifically, if the number of

channels in the last convolutional layer is k, the length of the

one-dimensional vector output by SPP is fixed as (4+2+1)×k,

which obviously has nothing to do with the size of the input

vector. The code gadgets can be of any length with SPP.

The last part of the model is the dense layer, where we

designed three rows of neurons. Each neuron is connected to

all neurons in the previous row. The number of neurons in

the first two rows is 256 and 64. The last layer has only one

neuron, and it is a float number.If this number is greater than

0.8, the output is flawed. Otherwise, it is normal. The closer

the output is to “1”, the more likely there is a vulnerability.

In summary, we present SEVULDET, the first semantically

enhanced deep learning vulnerability detection framework,

which employs the path-sensitive code gadgets generation

algorithm to derive more details of path semantics and control-

dependence. Furthermore, it carefully constructs a CNN with

the built-in spatial pyramid pooling and multilayer attention

mechanism to analyze and thus learn as much critical seman-

tics as possible in variable-length codes.
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IV. EVALUATIONS

Our evaluations focus on answering the following four

Research Questions (RQs):

• RQ1: Would the additional semantics extracted and pre-

served by flexible-length path-sensitive code gadgets be

helpful for detecting vulnerability, and to what extent?

• RQ2: Would a multilayer attention mechanism enable

SEVULDET to be more effective, and to what extent?

• RQ3: Compared with the state-of-the-art frameworks,

how effective is the SEVULDET?

• RQ4: Why do path-sensitive code gadgets and multilayer

attention mechanisms can help SEVULDET discover

more vulnerabilities?

A. Evaluation Metrics

To compare with the previous work, we employ five widely

used indicators: False-positive rate (FPR), False-negative rate

(FNR), Accuracy (A), Precision (P), and F1-measure (F1).

Let TP , FP , FN , and TN be the number of true positives,

false positives, false negatives, and true negatives, respectively.

The false-positive rate denotes the proportion of negative

instances that were reported as being positive. The false-

negative rate represents the proportion of positive instances

that were reported as being negative. Accuracy shows the

correctness of all detected instances while noting that A =
(TP + TN)/(TP + FP + TN + FN). Precision, P =
TP/(TP+FP ), gives the correctness of all detected vulnera-

ble instances. F1-measure is the harmonic average of Precision

and Recall, F1 = 2 · P · (1− FNR))/(P + (1− FNR)).

B. Dataset preparation

We adopt two widely used datasets: Software Assurance

Reference Dataset (SARD) and Nation Vulnerability Dataset

(NVD). SARD organizes and labels a large number of produc-

tion synthetic and academic programs, which can be broadly

classified into three categories: “Good” (i.e., no vulnerabil-

ities), “Flaw” (i.e., with vulnerabilities), and “Mixed” (i.e.,

with vulnerabilities and their corresponding patched versions).

The manifest.xml file in SARD details the file path, line

number, type, and language of the vulnerability via XML

format. NVD is a dataset containing open source software

vulnerabilities where the software versions are affected by the

vulnerabilities and the corresponding patches. The diff file in

NVD indicates the location of the vulnerabilities, and each

vulnerability corresponds to a CVE ID and CWE ID.

For SARD, we finally pick 126,231 C/C++ test cases involv-

ing 711 CWE IDs that can be recursively mapped by the tree-

structured CWE-1000 [33] onto 126 CWE IDs and eventually

divided into four classes as our sample. For NVD, we extracted

1,590 open source C/C++ test cases, of which 54.9% have

vulnerabilities and 45.1% do not. The test cases synthesized

in SARD are rich in diversity and quantity. Although the

amount of cases in NVD is not large, but these cases contain

complex semantics in real software, facilitating transfer learn-

ing between domains. After merging and de-duplication, we

collected 549,555 API/library function-generated gadgets, of

TABLE I
THE NUMBER OF FOUR TYPES OF PATH-SENSITIVE CODE GADGETS FROM

127,821 PROGRAMS (126,231 IN SARD AND 1,590 IN NVD).

Categories Vulnerable Non-vulnerable Total

Library/API function call 44,683 504,872 549,555
Array usage 44,996 394,451 439,447

Pointer usage 29,424 512,876 542,300
Arithmetic expression 3,696 38,855 42,551

All 122,799 1,451,054 1,573,853

TABLE II
EFFECTIVE OF THE ADDITIONAL SEMANTICS EXTRACTED BY

PATH-SENSITIVE CODE GADGETS AND FLEXIBLE INPUT LENGTH.

Neural network Flexible-length Kind A(%) P(%) F1(%)

BLSTM �
CG 94.9 82.5 85.2

PS-CG 95.1 87.8 88.8

BGRU �
CG 96.0 84.1 85.9

PS-CG 97.0 88.6 90.7

SEVULDET �
CG 95.4 91.0 89.6

PS-CG 97.3 96.2 94.2

which 8.1% were vulnerable; 439,447 array-generated gadgets,

of which 10.2% were vulnerable; 42,551 expression-generated

gadgets, of which 8.7% were vulnerable; 54,300 pointer-

generated gadget, of which 5.5% are vulnerable. Details given

in Table I. For each category in our prepared dataset, we

randomly select 30,000 path-sensitive code gadgets and divide

them into five equal parts for five-fold cross-validation [30].

The experimental data are indeed unbalanced, but we note that

the implementation of imbalanced data processing approaches

does not help to enhance the detection [34]. So we still conduct

our experiments with the unbalanced data.

C. Experiments for Answering RQ1

To determine whether additional semantics would be use-

ful for vulnerability detection, we select three networks for

comparisons, i.e., BLSTM [35], BGRU [36], and network

of SEVULDET. BLSTM and BGRU are representative net-

works in bidirectional RNN-based frameworks, and their input

lengths must be fixed, while the input length of SEVULDET

is flexible. We measure their effectiveness under the following

two conditions: a) using the code gadget extracted purely from

data and control dependence as a dataset (“CG” for short);

b) using the code gadget extracted from data-dependence,

control-dependence, and path semantics as a dataset (“PS-

CG” for short). We randomly select 37,500 gadgets from each

category, of which 30,000 are used as a training set and 7,500

as a test set. For BRNN, we predefine the time step as 500

(i.e., 500 tokens per code gadget).

The results are shown in Table II. Firstly, we compare

CG sets with PS-CG sets. As we can see, the accuracy and

precision of the selected networks improve by an average of

1.1% and 5.0% respectively when more path semantics are

obtained. This indicates that the lost path semantics in previous

works can help the network detect more vulnerabilities, and

SEVULDET compensates for these semantic losses.
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TABLE III
ABLATION EXPERIMENTS ON THE EFFECTIVENESS OF THE MULTILAYER

ATTENTION MECHANISM.

Neural network A(%) P(%) F1(%)

CNN 95.4 88.4 89.1
CNN-TokenATT 95.5 90.1 91.0
CNN-MultiATT 97.3 96.2 94.2

Moverover, we compare the results of three kinds of net-

works. It is clear that the accuracy and precision of our

network structure are higher than that of BLSTM and BGRU.

That means the semantics preserved by the flexible input

length realized by the spatial pyramid pooling layer does help

detect vulnerabilities.

RQ 1 Answer: SEVULDET is more efficient than

bidirectional RNN-based frameworks owing to the

semantics enhanced by flexible-length path-sensitive

code gadgets. It has improved F1-measure to 94.2%.

D. Experiments for Answering RQ2

To measure the effectiveness of the multilayer attention

mechanism, we conduct ablation experiments utilizing the

dataset mentioned in Section IV-B for training and detection.

As shown in Fig. 2, our framework applies the attention

mechanism in two steps: token embedding and model training,

which together are referred to as the multilayer attention mech-

anism. For the ablation experiments, three network structures

are adopted, i.e., a CNN without attention (CNN for short), a

CNN with token attention (CNN-TokenATT for short), and a

CNN with a multilayer attention mechanism (CNN-MultiATT

for short). We apply the same hyperparameters and datasets

to the above networks.

Table III summarizes the comparison. The attention mecha-

nism effectively improve the accuracy and precision of the

detection at both steps. The embedding step increased the

F1-measure by 1.9%, while the model training step with the

channel and spatial attention increased the F1-measure by

3.2%, the latter being slightly larger. Combining the above

observations, it is clear that the attention mechanism enhances

the vulnerability detection framework for deep learning.

It is still an open problem to explain the effectiveness of

deep neural networks. Literature [11] demonstrates that CNN-

based vulnerability detection frameworks are only slightly less

effective than RNN-based frameworks. Table II and table III

have demonstrated the effect of semantic information and the

multilayer attention mechanism on vulnerability detection.

We provide theoretical explanations with the knowledge

of deep learning to some extent. The receptive field [37] is

defined as the region in the input space that a particular CNN’s

feature is looking at (i.e., be affected by), and size of it gradu-

ally expands with the stack of convolutional layers. The calcu-

lations in the multilayer attention mechanism allow features of

the same dimension to interact, expanding the perceptual field

without increasing the depth. Moreover, attention networks

have been shown to be helpful in processing languages with

FPR(%) FNR(%) A(%) P(%) F1(%)
0

20

40

60

80

100

P
er
ce
nt
ag
e

Flawfinder RATS Checkmarx VUDDY SEVulDet

Fig. 5. The results of comparative experiment with advanced classical static
vulnerability detection frameworks.

hierarchical boundaries [24]. Therefore, the feature maps of

different locations and channels can be perceived from each

other and adaptively skewed toward primary potential features.

RQ 2 Answer: The multilayer attention mechanism

enables the code vulnerability detection framework to

capture primary potential vulnerability features.

E. Experiments for Answering RQ3

To fully demonstrate the effectiveness of SEVULDET, we

make a comprehensive comparison with classical widely used

static vulnerability detection frameworks firstly. Specifically,

we choose to compare with the open-source analysis tool

Flawfinder [5], the Rough Auditing Tool for Security [38]

(RATS), the commercial detection tool Checkmarx [4], and

the similarity-based framework VUDDY [39], in view of their

popularity in C/C++ codes vulnerabilities detection.

Fig. 5 summarizes the experimental results. Open source

Flawfinder and RATS have both high FPR and FNR. Check-

marx is better than Flawfinder and RATS but has high FPR

and FNR. In addition, VUDDY can only detect vulnerabilities

almost identical to those in the training program, so it trades

a high FNR for a low FPR. We observe that our framework

SEVULDET vastly outperforms the widely used classical static

vulnerability detection methods.

In addition to the comparison with classical static methods,

we compare the effectiveness of SEVULDET with other deep

learning-based works VulDeePecker [9] and SySeVR [11]. We

compare the effectiveness of three schemes on five categories

of code gadgets in our dataset (i.e., FC, AU, PU, AE, and All).

Only the FC category is used to evaluate VulDeePecker, as

it simply detects vulnerabilities generated by library function

calls. The main hyper-parameters of previous studies and

SEVULDET are summarized in Table IV.

Table V summarizes the results of the comparison experi-

ments. Because VulDeePecker not only cannot accommodate

control-dependent semantic information but also extracts much

less fine-grained path-sensitive semantic information than SE-

VULDET, we believe that SEVULDET is more effective than

VulDeePecker. For datasets with only one type of vulnerabil-

ities, the average F1 value of SEVULDET is 7.94% higher

than other methods. For the dataset with all four types of
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TABLE IV
THE HYPER-PARAMETERS OF VULDEEPECKER, SYSEVR, AND

SEVULDET.

Parameters VulDeePecker SySeVR SEVULDET

Dimension 50 30 30

Flexible-length � � �
Batch size 64 16 16

Learning rate 0.001 0.002 0.0001
Dropout 0.5 0.2 0.2
Epochs 4 20 20

TABLE V
COMPARISON RESULTS OF THREE VULNERABILITY FRAMEWORKS BASED

ON DEEP LEARNING AND CODE GADGETS (I.E., VULDEEPECKER,
SYSEVR, AND SEVULDET).

Work - Kind FPR(%) FNR(%) A(%) P(%) F1(%)

VulDeePecker-FC 4.1 21.7 92.0 84.0 81.0
SySeVR-FC 3.1 7.6 95.9 89.5 90.9

SEVulDet-FC 1.9 5.0 97.3 94.9 94.9
SySeVR-AU 3.0 10.2 95.2 90.6 90.2

SEVulDet-AU 4.9 3.6 96.0 93.3 94.8
SySeVR-PU 1.7 22.7 96.2 83.2 80.1

SEVulDet-PU 1.4 9.3 97.2 93.1 91.9
SySeVR-AE 1.4 3.8 98.2 93.7 94.9

SEVulDet-AE 0.5 3.6 99.8 96.3 96.3
SySeVR-All 2.7 12.3 96.0 84.1 85.9

SEVulDet-All 1.9 9.7 96.3 92.4 91.3

TABLE VI
COMPARISON RESULTS OF THREE VULNERABILITY FRAMEWORKS (I.E.,

VULDEEPECKER, SYSEVR, AND SEVULDET) ON REAL-WORLD

SOFTWARE PRODUCTS.

Work FPR(%) FNR(%) A(%) P(%) F1(%)

VulDeePecker 4.3 26.7 94.3 51.6 60.6
SySeVR 3.5 19.8 95.5 60.0 67.9

SEVulDet 3.3 11.5 96.2 62.7 73.4

vulnerabilities, SEVULDET outperformed SySeVR in all met-

rics, with a 5.4% increase in F1. Further, F1 values obtained

by SEVULDET for all single-type vulnerability detection are

higher than the F1 values obtained by SEVULDET for four

types of vulnerabilities, which means that SEVULDET has a

better performance in single-type than multiple types.

Test on Real-world Software Products. We have applied

SEVULDET to eight new versions of real-world software

products, Xen, to further show its validity in real-world

software. We have carefully selected 175 CVEs from these

versions that are not affected by upstream code vulnerabilities

and are classified under the CWE IDs we concern about. After

de-duplication, a total of 126,943 path-sensitive code gadgets

are generated, of which 7,558 (i.e., 6.0%) are vulnerable.

We evaluate several pre-trained detection frameworks and

summarize the results in Table VI. On real software Xen, the

path-sensitive code gadgets and semantic-enhanced network

proposed by SEVULDET can help reduce misclassifications,

especially false negative. Furthermore, we find three vulnera-

bilities in our classification results that have not been reported

in the NVD for Xen but do exist (i.e., their existence are

not known to us until we manually check their patches). Our

findings are identified in Table VII, and are similar to the three

vulnerabilities (i.e., CVE-2016-4453, CVE-2016-9104, CVE-

2016-9776) reported in Qemu, as Qemu and Xen share some

codes. As we can see, SEVULDET can detect at least one

more vulnerability than VulDeePecker and SySeVR. We also

manually run a 24-hour fuzzing test for each version based

on the prevalent fuzzing tool named AFL [40] with fuzzing

harness. While the vulnerability CVE-2016-9104 can not be

identified by AFL due to the special offset value and the far

apart trigger position to the test input interface.

We verify all these vulnerabilities in the subsequent patches

of Xen. In IV-F, we further study how semantic enhancement

can help identify vulnerabilities by detailing the finding of

the vulnerability CVE-2016-9776 induced by the elaborate

payload received by the Ethernet Controller emulator in Xen.

RQ 3 Answer: SEVULDET outperforms classical

static approaches and excels with state-of-the-art deep

learning-based solutions, with an average F1-measure

of up to 94.5%. Moreover, SEVULDET identifies more

real-world vulnerabilities than existing technologies.

F. Experiments for Answering RQ4

To showcase the intrinsic interpretability of the path-

sensitive code gadgets generation algorithm and multilayer

attention mechanism on vulnerabilities detection, below we

articulate the discovery of the unreported vulnerability CVE-

2016-9776 found above, through hooking and visualizing of

the token weight calculated by the attention mechanism.

The left side of Fig. 6 exemplifies part of the path-sensitive

code gadget generated by SEVULDET for the source code

in Xen corresponding to the infinite loop vulnerability CVE-

2016-9776. This vulnerability arises since the user-controllable

variable s�emrbr (Line 465) is assigned a value of 0, leading

to size to remain constant (Line 467), creating an infinite loop

issue. The path-sensitive code gadget successively stores the

data-dependence, the control range corresponding to while
(from 463 to 495), and the path information to line 465

(repeated execution of statements between 463 and 495). Thus

the abstract logic of lines 463, 465 and 467 that interacts

and ultimately affects the loop count can be extracted in its

entirety, which was not possible with the previous code gadget

generation approach.

After the vulnerability logic is stored intactly in the path-

sensitive code gadget, the multilayer attention mechanism will

acquire the critical semantics. Specifically, the gadget contains

711 tokens, and the length-adaptive network does not cut or

discard any tokens. We feed it into pretrained SEVULDET, and

hook token weight calculated by the attention mechanism. The

top ten most weighted tokens are visualized in right subplot of

Fig. 6, and their percentages are obtained by regularizing based

on the maximum weight. Multiple of these tokens appear on

lines 463, 465, 466, and 467, which are the locations where

the vulnerability was formed. Moreover, the weight of the

brackets in line 495 ranks 8th, indicating that the network can
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TABLE VII
THREE VULNERABILITIES IN REAL-WORD SOFTWARE, WHICH DO NOT REPORTED BY PUBLIC VULNERABILITY DATASET, IDENTIFIED BY SEVULDET.

Real-world software
The path of

vulnerable files
Vulnerability
release date

1st patched version
of target product

CVE-ID (QEMU)
Systems which can

detect the vulnerability

Xen 4.4.2 */display/vmware vga.c 06/01/2016 Xen 4.8.0 CVE-2016-4453
AFL,

SySeVR, SEVulDet

Xen 4.6.0 */9pfs/virtio-9p.c 12/09/2016 Xen 4.9.0 CVE-2016-9104
VulDeePecker,

SEVulDet
Xen 4.7.4 */net/mcf fec.c 12/29/2016 Xen 4.9.0 CVE-2016-9776 AFL, SEVulDet

s->emrbr
buf_len
retsize

while
size

addr
}
{

bd.flags
|=

463: while (size > 0) {
464:     mcf_fec_read_bd(&bd, addr, size);
465:     buf_len = (size <= s emrbr) ? size: s emrbr;
466:     bd.length = buf_len;
467:     size  buf_len;
470:     if (size  4)
471:         buf_len  size - 4;
473:     cpu_physical_memory_write(buf_addr, buf, 
buf_len);
474:     buf  buf_len;

495: } 
100%

33%

79%

51%

Fig. 6. A path-sensitive code gadget corresponding to CVE-2016-9776 and
a visualization of the ten tokens of most interest to attention in SEVULDET.

notice our path semantics [24]. The operators and variables

associated with vulnerabilities will be of sufficient concern to

SEVULDET.

Therefore, the multilayer attention mechanism in SE-

VULDET arguably better captures the bounded hierarchical

structure of source codes so as to successfully learns more

potential vulnerability patterns from path-sensitive code gad-

gets which contain sufficient vulnerability logic.

RQ 4 Answer: Path-sensitive gadgets with complete

vulnerability logic help the multilayer attention mech-

anism learn new potential vulnerability patterns.

V. RELATED WORK

We broadly categorize state-of-the-art solutions in three cat-

egories: classical approaches, conventional machine learning-

based approaches and deep learning-based approaches.

A. Classical Approaches

Early efforts in software vulnerability detection [5], [41],

[42] relied excessively on complex rules drafted by experts.

Solutions such as code similarity detection [6], [39] and

symbolic execution [43], [44] that rely primarily on analysis of

source code often suffer from high false positives. Fuzzing [7],

[45]–[47] and taint analysis [48], [49] usually reduce false

positives but suffer from low code coverage [50] and inaccu-

rate localization [51]. Hybrid analysis schemes [52] integrate

multiple analysis techniques, combining their advantages and

disadvantages, and are inefficient to operate in practice.

B. Conventional Machine Learning-Based Approaches

Conventional ML-Based (non-neural network) technologies

for vulnerability analysis and discovery fall into three major

categories [53]: 1) software metrics-based; 2) vulnerable code

pattern-based; and 3) anomaly-based. The software metrics

measure software product quality but vulnerabilities because

they do not provide an analysis of code security [54]. Patterns

of code are depicted in various ways, such as code tokens [55],

ASTs, CFGs, program execution trace and so on. Each form

of representation provides a different view of the source code.

Methods for abnormal patterns [56] can detect codes that

do not conform to program guidelines or conventions for

potential flaws/vulnerabilities but may incur false positives or

be confined with task-specific applications.

C. Deep Learning-Based Approaches

Our work is part of a recent DL-based software vulner-

ability detection effort [8], [9], [12], [57], [58]. A compre-

hensive summary and identifies challenges of the field can

be found at [13]. Rebecca et al. [8] labeled vulnerabilities in

open-source code functions using a variety of static analysis

frameworks and learned the labels using neural networks.

Li et al. [9] proposed the code gadgets generated by data-

dependence and used BLSTM to learn and detect vulner-

abilities, which can only detect vulnerabilities caused by

library/API function calls. Subsequent research [59] conducted

a comparative study, introducing control dependencies and

comparing different network structures, but still analyzing

the same types of vulnerabilities. SySeVR [11] prefered the

SyVcs than functions to locate 811 library/API functions calls

vulnerabilities. μVulDeePecker [10] presents code attention,

coupled with code gadgets, which locate 40 CWE IDs caused

by library/API functions calls. These code gadget-based works

suffer from semantic loss, which SEVULDET compensates for

both in terms of preprocessing and networking.

VI. CONCLUSION

We propose SEVULDET, the first semantically enhanced

deep learning vulnerability detection framework. SEVULDET

employs a path-sensitive code gadgets generation algorithm to

derive more details of path semantics and control dependence.

In addition, it constructs a CNN with built-in spatial pyramid

pooling and multilayer attention mechanism to preserve and

further learn as much critical semantics as possible in flexible-

length source codes. Extensive evaluations show SEVULDET

far outperforms classical detection approaches and excels with

state-of-the-art deep learning-based solutions, by improving

F1-measure to around 94.5%. We also verify its effect in real-

world software products and identify more vulnerabilities than

existing technologies. Moreover, we make the first step in

analyzing the intrinsic mechanism of attention mechanism in

improving the effectiveness of vulnerability detection.
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