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Abstract
Cryptographic functions play a critical role in the secure

transmission and storage of application data. Although most
crypto functions are well-defined and carefully-implemented
in standard libraries, in practice, they could be easily misused
or incorrectly encapsulated due to its error-prone nature and
inexperience of developers. This situation is even worse in the
IoT domain, given that developers tend to sacrifice security for
performance in order to suit resource-constrained IoT devices.
Given the severity and the pervasiveness of such bad practice,
it is crucial to raise public awareness about this issue, find the
misuses and shed light on best practices.

In this paper, we design and implement CRYPTOREX, a
framework to identify crypto misuse of IoT devices under
diverse architectures and in a scalable manner. In particular,
CRYPTOREX lifts binary code to a unified IR and performs
static taint analysis across multiple executables. To aggres-
sively capture and identify misuses of self-defined crypto
APIs, CRYPTOREX dynamically updates the API list dur-
ing taint analysis and automatically tracks the function argu-
ments. Running on 521 firmware images with 165 pre-defined
crypto APIs, it successfully discovered 679 crypto misuse is-
sues in total, which on average costs only 1120 seconds per
firmware. Our study shows 24.2% of firmware images violate
at least one misuse rule, and most of the discovered misuses
are unknown before. The misuses could result in sensitive
data leakage, authentication bypass, password brute-force,
etc. Our findings highlight the poor implementation and weak
protection in today’s IoT development.

1 Introduction

As an emerging field, the Internet of Things (IoT) system
is on the track of rapid development. IoT devices have been
deployed in several scenarios, such as smart home, smart trans-
portation, and so forth. A recent marketing research report
forecasts that the amount of IoT devices will grow to around
19 billion worldwide in 2022 [24].

Different from the traditional embedded devices, IoT de-
vices (such as smart-home devices) are usually equipped with
multiple sensors and connected to the network. In this context,
the security of IoT devices becomes crucial as it involves not
only the data privacy of users [13] but also the risk of danger-
ous incidents [28]. Due to the requirements of usage scenarios
and the limitation of manufacturing costs, IoT devices often
have customized hardware and software configurations. Such
a closed hardware-software environment gives people an illu-
sion of safety. However, that is not the case, and IoT related
vulnerabilities emerge endlessly [10,31,38,43,50]. Given the
prevalence of vulnerable devices, we believe these disclosed
incidents are just the tip of the iceberg. What is worse, until
now, there has not been a well-established set of technical
standards for IoT security.

Previous studies of identifying vulnerabilities in IoT de-
vices have been traditionally focused on memory corrup-
tions [16–18, 21, 39], authentication bypass [46], and domain
specific vulnerabilities such as BadUSB [30]. However, cur-
rently no tool can automatically identify crypto misuses in IoT
devices. As a consequence, large-scale security analysis of
crypto misuse in IoT devices has never been conducted before.
On the one hand, existing solutions target specific platforms
such as Android and iOS [23, 26, 40]. They are less suitable
for IoT devices that often involve different architectures. For
example, Android applications are provided in a reversible
bytecode format, whereas IoT applications are compiled to
machine code that could run on various CPU architectures
(MIPS, ARM, PowerPC, and so forth).

On the other hand, prior works rely on specific crypto li-
braries and do not handle self-defined crypto functions. Given
the lack of security standards in IoT development, developers
tend to use self-defined crypto functions that wrap standard
crypto functions. Although several well-established crypto
libraries provide well-designed and carefully-implemented
crypto APIs to facilitate the deployment of secure modules,
there is no guarantee whether these crypto APIs are used and
wrapped correctly. For example, inexperienced developers
may use a non-random initialization vector for block cipher



mode encryption or use static seeds for random number gener-
ation functions. Such a problem usually results in confidential
data leakage and even system intrusion.

In this paper, we introduce CRYPTOREX, a framework
that achieves automated and large-scale analysis of crypto
misuse in IoT firmware. On a high level, we first lift the binary
code with different architectures to the unified intermediate
representation (IR) format. Then we recover the stack layouts
to precisely identify the arguments of low-level crypto API
arguments and track the definition of the arguments with taint
analysis. In order to further capture the self-defined crypto
functions and the misuses, CRYPTOREX maintains a list of
crypto APIs that can be dynamically updated during taint
analysis.

To demonstrate the feasibility of CRYPTOREX, we im-
plemented a prototype of CRYPTOREX and carried out a
large-scale experiment based on 1327 firmware images (from
12 vendors, in 7 different architectures) crawled from the
Internet. The device types include IP camera, network at-
tached storage, router, smart plug, smart bulb, and so forth.
CRYPTOREX successfully unpacked 521 firmware images
and identified 679 crypto misuses. Surprisingly, the experi-
ment also demonstrates remarkable performance: on average,
it takes only 1120 seconds for CRYPTOREX to complete
one firmware analysis. Further investigation shows that 126
firmware images violate at least one crypto misuse rule. The
misuses could result in the compromise of secrecy, authenti-
cation bypass, password brute-force, and etc.

With a full implementation and a comprehensive evalua-
tion, CRYPTOREX makes the first step towards scalable and
quantitative measurement for (in)secure crypto usage in IoT
devices. We make this tool publicly available for continuous
research on IoT firmware analysis.1

Contributions. The main contributions of this paper are:

• We designed a new analysis framework – CRYPTOREX,
which can automatically identify crypto misuses in IoT
devices. With new techniques such as stack layout recov-
ery and dynamic update of crypto APIs, it can achieve
reliable cross-architectural analysis in a large-scale man-
ner.

• We performed the first large-scale measurement study on
(in)secure crypto usage over a large number of firmware
images. Our study has brought to light the worrisome
situation (questionable practice and weak protection) in
IoT development.

Roadmap. The rest of this paper is organized as follows. Sec-
tion §2 gives the background knowledge of IoT firmware
analysis and crypto misuse. The detailed design of CRYP-
TOREX is elaborated in Section §3. The evaluation results

1https://github.com/zhanglikernel/CRYPTOREX

are summarized in Section §4. Section §5 discusses some limi-
tations of our framework and experiments. Section §6 reviews
the related work, and Section §7 concludes this paper.

2 Background

In this section, we provide the necessary background about
firmware analysis and cryptography misuse.

2.1 Security Analysis of IoT Firmware
Firmware is a specific class of computer software that pro-
vides the low-level control for the device’s specific hardware.
Unlike PCs, for which software engineers develop multi-
purpose applications, firmware is usually designed for special
purposes and runs on embedded devices (e.g., IoT devices)
with limited resources and diverse architectures. Unfortu-
nately, the firmware-specific features have also introduced
several challenges to the security analysis. Here we summa-
rize the challenges from the aspects of dynamic analysis and
static analysis.

• Dynamic analysis: In dynamic analysis, the firmware
is executed in a controlled environment. A bare-metal
analysis (based on real devices) could output the most
accurate result, but it needs the support of an exposed
debug port on the device. Unfortunately, many manu-
facturers disable the debug port for security concerns.
An alternative solution is to run the entire firmware or
embedded programs in an isolated emulator. The chal-
lenge is the lack of non-volatile memory (NVRAM) pa-
rameters, which causes runtime failures during dynamic
analysis. In previous work, Chen et al. [15] simulated
the NVRAM parameters using userspace libraries. How-
ever, it is not suitable for a large-scale analysis due to
the diversity of architectures.

• Static analysis: Compared with dynamic analysis, static
analysis scrutinizes the binary code of firmware, instead
of relying on emulation environments. In most cases, it
achieves a balance of efficiency and accuracy. However,
developing a unified static analysis framework for vari-
ous IoT devices with different underlying architectures
(MIPS, ARM, PowerPC, and so forth) is not a simple
task. The disassembled binary files may contain differ-
ent order sets with different operations and side-effects,
which leads to various calling conventions and different
stack layouts. Consequently, this could cause difficulty to
further analysis such as recovering function arguments.

Our approach: IR-based analysis. Through the above dis-
cussion, for large-scale security analysis, the difficulty mainly
comes from the non-unified underlying architectures of IoT
firmware. To bridge the gap, we lift diverse binary code to

https://github.com/zhanglikernel/CRYPTOREX


a unified intermediate representation (IR). In the process of
compiling, the source is transformed into IR and then binary
code. Vice versa, we can lift the binary code of different archi-
tectures to the same IR, and the subsequent analysis could be
based on the IR. Previous work [20,46] has also demonstrated
the feasibility of firmware analysis.

2.2 Cryptography Misuse
Though the standard cryptographic libraries provide well-
implemented and well-defined APIs, developers may not fully
understand the API documentation and misuse the APIs by
delivering improper arguments, which could result in the com-
promise of confidentiality in network communication and data
storage. In this paper, we focus on the inappropriate use of
crypto functions and assume that the involved crypto algo-
rithms are secure. Based on the study of Egele et al. [23] and
Lazar et al. [33], we use the following six rules in cryptogra-
phy that should be followed by IoT developers. As indicated
in the OWASP guideline [44], these time-tested rules cover
common misuses in symmetric key encryption, password-
based encryption, and random number generation.

• Rule 1. Do not use electronic code book (ECB)
mode for encryption. The ECB mode cannot provide
strong enough security guarantee. For example, the
AES_ecb_encrypt function of the libcrypto library
should not be used for security-related modules.

• Rule 2. Do not use a non-random initialization vec-
tor (IV) for ciphertext block chaining (CBC) encryp-
tion. If the IV is static, the encryption scheme is con-
sidered insecure. For example, developers could use the
gcry_set_iv function provided by libgcrypt to ini-
tialize the IV for the subsequent encryption operations.

• Rule 3. Do not use constant encryption keys. Constant
encryption keys would bring the direct risk of cracking
the encryption schemes. For example, when developers
invoke the AES encryption function of the wolfcrypt
library, they could use wc_AesSetKey to specify a secure
key.

• Rule 4. Do not use constant salts for password-based en-
cryption (PBE). In Linux, the most frequently used API
for password encryption is char ⁎crypt(const char
⁎key, const char ⁎salt) of libcrypt. Almost all
Linux systems use it to encrypt users’ passwords and
save the outputs to /etc/shadow. The parameter salt
could not be assigned as a constant value.

• Rule 5. Do not use fewer than 1000 iterations for
PBE. For example, in the function Evp_BytesTokey of
libcrypto, the argument count specifies the round of
iterations. Some developers may set small values for per-
formance consideration, which would result in the risk
of brute-force attacks.

• Rule 6. Do not use static seeds for random number gen-
eration (RNG) functions. When a program needs to gen-
erate secure random numbers, it should not use rand()
or srand() with a constant seed.

To provide an intuition, we list some crypto misuse exam-
ples in Table 1.

2.3 Intermediate Representation

There are several available IRs designed for different purposes,
such as REIL [22], LLVM [32], and BAP [12]. Since our
analysis focuses on the function arguments, intending to track
variable types, the IR should support static data-flow analysis
and represent registers and memory locations in a unified
format, even the executables have different architectures.

In our work, we employ Valgrind’s VEX IR [41] as the
representation format. The VEX IR and its Python bindings
PyVEX [46] provides some features which fit our require-
ments ideally.

• Static program slicing: PyVEX supports static program
slicing. PyVEX translates binary code to IR code and
divides it into basic blocks that are in the form of IRSBs
(IR Super-Block). With IRSBs, we can conveniently con-
struct the control flow graph (CFG) and data flow graph
(DFG).

• Base operations: After disassembly, an assembly instruc-
tion is transformed into multiple statements in VEX.
A statement is an "atomic action“ which contains an
operand and an IR expression. Besides, VEX classifies
all operations into four base statements: Write Temp, Put
Register, Store Memory, and Exit.

PyVEX transforms binary code into statements, which
are “atomic actions” defined by VEX.

3 Design of CRYPTOREX

Here we describe the detailed design of CRYPTOREX. At a
high level, CRYPTOREX takes a raw firmware image as the
input and outputs a report indicating the misuse of crypto func-
tions in the firmware image. Mainly, the analysis procedure
consists of five steps (as shown in Figure 1):

• Firmware Acquisition and Pre-processing. First, we
develop a crawler to automatically download firmware
images from IoT vendors’ websites and then extract
executable files from them.

• Lifting to VEX IR. Next, we lift the binary executables
in various architectures to VEX IR. The subsequent
analysis is conducted upon the unified representation.



Table 1: Examples of Crypto Misuse
Rule # [Library]: Function Parameter Misuse

Condition
Rule 1 [libgcrypt]: gcry_error_t gcry_cipher_open(gcry_cipher_hd_t ⁎hd,int

algo, int mode,unsigned int flag)
mode == 1

Rule 2 [wolfcrypt]: int wc_AesSetIv(Aes ⁎aes, const byte ⁎iv) iv static string
Rule 3 [Nettle]: void aes192_set_encrypt_key (struct aes192_ctx ⁎ctx, const

uint8_t ⁎key)
key static string

Rule 4 [libcrypt]: char ⁎crypt(const char ⁎key, const char ⁎salt) salt static string
Rule 5 [libcrypto]: int EVP_BytesToKey(const EVP_CIPHER ⁎type, const

EVP_CHPHER ⁎type, const unsigned char ⁎salt, const unsigned char
⁎data, int datal, int count, unsigned char ⁎key, unsigned char ⁎iv)

count < 1000

Rule 6 [C standard library]: void srand(int seed) seed static integer
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Figure 1: Framework overview.

• Inter-procedural Control Flow Graph Construction.
Then, we construct inter-procedural control flow graphs
(ICFG) for the executable files. Such graphs capture data
flows across function calls.

• Cross-file Call Graph Construction. After that, a
cross-file call graph for each crypto function is built to
facilitate the data-flow tracking (in the next step) which
crosses multiple executables.

• Taint Analysis. In the last step, we perform a backward
taint analysis to track how each crypto function argument
is defined. If the definition triggers the misuse rules,
CRYPTOREX outputs a report listing the discovered
crypto misuse cases.

3.1 Firmware Acquisition and Pre-processing

Since there is no well-established IoT firmware dataset, we de-
veloped a web crawler based on the prototype tool of Chen et
al. [15] to download firmware from the IoT vendors’ websites

automatically. Also, the existing tool only supports down-
loading from FTP servers. Therefore we added a module
to support firmware downloads from dynamically generated
websites.

For a timely firmware update, developers tend to pack
firmware images to save transmission time and storage space.
As a result, most of the firmware images that we collected are
compressed with various compression algorithms and cannot
be directly analyzed. To tackle this problem, we use the state-
of-the-art firmware unpacking tool Binwalk [2]. It integrates
several file system signatures and decompression algorithms
to identify file systems and extract executables (binary files)
from the firmware.

3.2 Lifting to VEX IR

File filter. To reduce the time consumption of IR conversion,
CRYPTOREX first filters out the binary files that do not in-
voke the crypto APIs. Specifically, we use Buildroot [3], a
cross-compilation tool, to analyze the header information of



each file to check whether cryptography libraries are included.
If the cryptography libraries are not included, we then ignore
the binary file. In practice, the filter utilizes the API data ex-
tracted from seven widely used open-source C/C++ cryptogra-
phy libraries: libcrypto [42], libcrypt [29], cryptlib [4],
LibTomCrypt [7], libgcrypt [6], wolfcrypt [9], and
Nettle [8]. These libraries have covered nearly 100% us-
age cases in our firmware dataset.

Enhanced conversion. After that, built on top of the binary
analysis framework Angr [1], CRYPTOREX invokes Angr
APIs to disassemble binary files and lift different low-level
instruction sets to the unified VEX IR. However, the direct
binary-IR conversion is not sufficient to meet our require-
ments: (1) The call relations of Angr is incomplete because it
only considers explicit invocation addresses. If the address is
put into a register or memory, Angr cannot locate it. (2) Type
information of variables is lost, which affects the data-flow
tracking (especially the function parameters). (3) The func-
tion arguments are often passed via the register, stack, or both,
and follow specific conventions. If the binary code is lifted to
the IR, architecture-specific calling convention will be lost.

To solve the first two shortcomings, based on the function-
alities of IDA Pro [5], we develop a recovery script to (1)
locate the actual addresses of jump instructions to complete
the function call relations and (2) infer data types (and save
them as a data segment reference table) to facilitate the sub-
sequent data-flow tracking. For the third shortcoming, we
extract the arguments passing rules of different architectures
in advance. During the testing, we identify the architecture
types (also obtained through IDA Pro) of firmware images
and apply the corresponding arguments passing rules.

3.3 Inter-procedural Control Flow Graph
Construction

After that, we construct the inter-procedural control flow
graph (ICFG), which is the foundation for the subsequent
inter- and intra-procedural data-flow analysis. In particu-
lar, our ICFG construction starts with the entry point (i.e.,
start()) of each executable, and traverses functions and ba-
sic blocks through depth-first searching.

We consider function call relations in the graph, in order
to support inter-procedural analysis. Except for the functions
that can be reached from the entry point, we also discover
isolated functions and their call relations, by scanning code
segments with pre-defined function signatures [5]. In this way,
function call relations and API call sites can be discovered
as many as possible. This step is hugely beneficial for library
files because they only contain isolated functions for external
use.

Also, though Angr is able to resolve explicit target ad-
dresses, it cannot resolve implicit call relations. Therefore,
to improve the precision of data-flow analysis (i.e., implicit

call relations), we utilize the data segment reference table
obtained from Section 3.2 and perform value-set analysis [11]
to recover the addresses of indirectly invoked functions. In
other words, for indirect jumps (e.g., jr $t0 in MIPS), we
simulate previous instructions and compute the actual value
(or the value range) of the register or memory location. If the
destination is identified as a function, we then add it to the
function call relations.

Furthermore, given that loop structures often contain
computation-intensive instructions (like increment operations)
and have less variable definitions and uses, we flatten the loop
structure so that each loop is executed only a few times during
data-flow analysis. This operation can significantly reduce
the time consumption of loop processing.

3.4 Cross-file Call Graph Construction

We notice that considerable IoT solution providers defined
their own crypto APIs wrapping low-level crypto APIs (from
other libraries), which could be treated as some kind of opti-
mization to facilitate the internal development process. Exe-
cutable files could either invoke the original low-level APIs
or the self-defined APIs. This phenomenon requires us to
capture the function call relations between them during the
data-flow analysis. Therefore, in this step, we construct the
cross-file call graph (CFCG for short) that involves multiple
executable files and represents the chains of function calls for
each low-level crypto API. With such a representation, we
can dynamically update the crypto API list and further detect
the misuse of self-defined crypto APIs.

In the beginning, each crypto API (from libcrypto,
libcrypt, cryptlib, Nettle, libgcrypt, wolfcrypt, and
LibTomCrypt) acts as the starting point of a call graph. Next,
we construct the chains of function calls for the crypto API.
To this end, we first scan the call sites of the crypto API
in the extracted executables and then recursively chain the
callers of the functions that invoke the crypto API. For the
non-library executables, we only need to consider internal
functions and imported functions. For library files, exported
functions should also be considered because other executables
can further invoke them.

As an example, Listing 1 is a piece of code snippet from
our dataset. The smm program is extracted from D-Link
DSR-150 (VPN router) which supports up to 65 VPN tun-
nels. After code review, we find its traffic encryption mod-
ule is implemented through invoking the self-defined crypto
API DES_ProcessFile() provided by library libSys.so.
In the definition of DES_ProcessFile(), low-level crypto
API DES_string_to_key() is invoked to specify the key
used by the following encryption. Except for that, both
DES_string_to_key() and DES_ProcessFile() can also
be invoked by other executables. We show the result of CFCG
(partial) in Figure 2.
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1 /⁎⁎⁎⁎⁎ libSys.so ⁎⁎⁎⁎⁎/
2 signed int __fastcall DES_processFile(int

a1, const char ⁎a2, const char ⁎a3,
int a4){

3 int v7;
4 v7 = a4;
5 ...
6 // low -level crypto API
7 DES_string_to_key(v7 ,&v18);
8 ...
9 while(fread(&ptr ,&v15 ,&v14 ,v5)){

10 DES_ecb_encrypt (&ptr ,&v15 ,v14 ,v5)
11 }
12 }
13 //⁎⁎⁎⁎⁎ smm ⁎⁎⁎⁎⁎/
14 signed int __fastcall sub_243A0(char ⁎a1,

int a2){
15 v2 = a2;
16 v3 = a1;
17 if(v3){
18 v8 = v3;
19 }else{
20 v8 = "/pfrm2 .0/ sslvpn/var/conf/smm.

conf";
21 }
22 if(v2)
23 // defined in libSys.so
24 DES_processFile (1,"tmp/.smm.clr",v8,"

root123");
25 }

Listing 1: Self-defined crypto API: D-Link DSR-150.

3.5 Taint Analysis
Our final purpose is to detect whether the crypto APIs are
misused in IoT firmware. We perform a static taint analysis
(backward tracking) to tag the function arguments at the call
sites and determine their actual values for checking. To this
end, the first step is to precisely identify the sources, which are
the arguments of crypto APIs. Then, we identify the wrappers

of crypto APIs and dynamically update the API list based on
how the function arguments propagate. In the end, the misuse
rules are applied at the sinks.

Taint sources. Although we have the prototypes of crypto
APIs (as shown in Table 1), the arguments in binary code
are not matched with the defined parameters. Therefore, to
tag the taint sources (i.e., the arguments of crypto APIs), we
need to identify which function argument corresponds to the
function parameter that may lead to crypto misuse. For that,
we utilize the calling conventions: the arguments passing rule
of the firmware under testing has been matched and recorded
in the step of lifting to VEX IR (Section §3.2).

In the procedure, a register is tagged as a taint source when
a function argument is passed with it. For stack-based passing,
we need to recover the stack layout at the call sites statically,
in order to determine which stack variable serves as a function
argument. For this reason, we first compute the values of the
stack pointer and the base pointer to determine the range of
the caller’s stack frame. Then we locate the stack-based argu-
ments at the memory locations whose addresses are specified
by offsetting the caller’s stack pointer.

Taint propagation. To build data dependence, we employ
the use-define chain algorithm of Angr. However, it incurs
false negatives at array operation APIs of C libraries. For
example, the function strcpy(dest, src) copies the string
from the source address to the destination address. However,
the data dependency is not built between these two variables.
To solve the problem, we implemented a module to simulate
the functionality of array operation APIs (e.g., memset() and
memcpy()) and build data dependency between related vari-
ables. In the meantime, we also dynamically update the list of
crypto APIs during backward taint analysis. On the CFCGs
that we construct, we add a function (i.e., a self-defined crypto
API) to the list of crypto APIs if one of its function param-
eters is passed to the crypto APIs as an argument. As an
example, the function DES_ProcessFile() is a self-defined
crypto API (shown in Figure 2).

Taint sinks. We define taint sinks at constants. A constant
can be interpreted as either a pointer or an immediate value,
based on the types of function arguments given in the function
prototypes. If it is a pointer, we get its referenced data in the
data segment reference table generated in Section §3.2. If the
constant is an immediate value, no further step is required. Af-
ter the interpretation, we analyze whether the data is matched
with the specifications defined in misuse rules. If a misuse
condition is triggered, such a case is considered as violation
and recorded in the analysis report.

4 Implementations and Evaluation

In this section, we give the implementation details of CRYP-
TOREX and the evaluation results based on a large-scale
real-world IoT firmware dataset.
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4.1 Implementation
We implemented CRYPTOREX with 3310 lines of Python
code. Apart from that, we integrated the APIs of existing open-
source projects to avoid reinventing the wheel. Especially,
Binwalk [2] is utilized to unpack firmware images. Angr [1]
is used to convert low-level binary code into VEX IR, and
Buildroot [3] is used in building cross-file call graphs.

4.2 Experiment Setup

Dataset. During September and October of 2018, we crawled
1327 firmware images in total, covering 12 different IoT ven-
dors, including WD, TP-Link, Linksys, AT&T, Buffalo, and
so forth. The device types include IP camera, network at-
tached storage, router, smart plug, smart bulb, and so forth.
The detailed data is provided in Table 3.

Among the firmware images we collected, CRYPTOREX
successfully unpacked 521 of them (39.3%). Our unpacking
implementation relies on Binwalk, which is the de facto tool
for firmware unpacking and is able to handle common com-
pression algorithms. However, inevitably, some IoT vendors
use non-standard packing techniques such as proprietary com-
pression algorithms and encryption algorithms. In this paper,
we did not handle the unsuccessful cases and leave it as future
work.

Our further analysis shows that the successfully unpacked
firmware samples have seven different architectures – ARM,
MIPS, MIPSel, Tilera TILE-GX, PowerPC, MIPS64, and
X86_64. It should be diverse enough to demonstrate the ca-
pability of cross-architecture analysis of CRYPTOREX. The
detailed distribution data is plotted in Figure 3.

Regarding crypto APIs, we extracted all 165 crypto APIs
from 7 well-known crypto libraries, as listed in Table 2. In
total, we tracked 190 crypto-related arguments.

Table 2: Statistics of used crypto APIs
Library # of Crypto

APIs
# of Tracked
Arguments

cryptlib [4] 3 4
libgcrypt [6] 4 4
libcrypto [42] 80 87
libcrypt [29] 3 4
wolfcrypt [9] 20 30
Nettle [8] 45 46
LibTomCrypt [7] 10 15

Execution environment. Also, in our experiment, CRYP-
TOREX run on an Ubuntu 16.04 PC equipped with Intel
Core i7 quad-core 2.50 GHz CPU and 8G RAM.

4.3 Findings

At the firmware level (Table 3), CRYPTOREX discovered 679
crypto misuse bugs in 126 vulnerable firmware images from
8 vendors, indicating that 24.2% (126/521) of firmware im-
ages contain at least one misuse issue. Notably, we found that
even 88.7% of Tomato device firmware images are vulnera-
ble. Only the firmware images from Buffalo, Zyxel, TENVIS
passed our checking, and no misuse issues were identified.

At the rule level (Table 4), the most common misuse is
using ECB mode for encryption (Rule 1, 20.5%), which could
result in several security risks. For instance, attackers can de-
termine whether two ECB-encrypted messages are identical.
Also, the misuse cases of using constant encryption parame-
ters include constant IV (Rule 2, 4.6%), constant keys (Rule
3, 11.3%), and constant salts (Rule 4, 10.8%). Once they are
leaked, the secrecy of stored data and transmitted data could
be compromised. Moreover, we found that 4.4% of firmware
images use less than 1000 iterations2 for password-based en-
cryption (Rule 5), indicating that developers tend to sacrifice
security to achieve better performance. As a result, attack-
ers can perform brute-force attacks using a large number of
candidate passwords.

In our evaluation, we did not find the case of violating
Rule 6. Our further investigation shows that the random num-
ber generation modules of most IoT firmware images rely
on /dev/urandom or /dev/random directly, without using a
random seed. Such implementations are deemed secure.

4.4 Accuracy

False positives. Given the tremendous efforts to manually
confirm all 679 identified misuse bugs, we randomly sampled
30 cases from the reported misuses and manually examined
them to make inferences about the statistical population. How-
ever, although 29 of them (96.7%) were confirmed misusing

2In fact, the iteration round of all firmware images violating Rule 5 is 1.



Table 3: Results of crypto misuse detection (by vendors)
Vendor # of

Firmware
# of

Unpacked
Firmware

% of
Unpacked
Firmware

# of Vul-
nerable

Firmware

% of Vul-
nerable

Firmware

# of
R1

issues

# of
R2

issues

# of
R3

issues

# of
R4

issues

# of
R5

issues

# of
R6

issues
D-Link 496 201 40.5% 22 11.0% 106 7 30 27 0 0
Linksys 121 70 57.9% 31 44.3% 48 19 41 20 20 0

WD 10 10 100% 4 40.0% 80 36 0 0 3 0
360 5 4 80% 1 25.0% 2 0 0 0 0 0

AT&T 12 0 0% 0 0% 0 0 0 0 0 0
Buffalo 7 4 57.1% 0 0% 0 0 0 0 0 0
Netgear 66 29 43.9% 1 3.5% 11 0 0 0 0 0
TP-Link 47 47 100% 1 2.1% 5 0 0 0 0 0
Tomato 71 71 100% 63 88.7% 102 0 58 58 0 0

MikroTik 23 23 100% 3 13.0% 0 0 6 0 0 0
Zyxel 450 50 11.1% 0 0% 0 0 0 0 0 0

TENVIS 19 12 63.2% 0 0% 0 0 0 0 0 0
Total 1327 521 39.3% 126 24.2% 354 62 135 105 23 0

Table 4: Results of crypto misuse detection (by rules)
Violated Rule # of Firmware % of Firmware
Rule 1 107 20.5%
Rule 2 24 4.6%
Rule 3 59 11.3%
Rule 4 56 10.8%
Rule 5 23 4.4%
Rule 6 0 0%
No violation 395 75.8%

crypto functions, there was a false positive for self-defined
crypto functions (see Listing 2 extracted from D-Link NAS
device DNS-326), which is caused by dead code (i.e., the
constant argument is not used in crypto operations). Specif-
ically, in the definition of the self-defined crypto function
sub_155F0(), if it is invoked with its third parameter being 1
(at Line 19), the low-level crypto function will have its salt
parameter being the constant string "$1$". However, when the
self-defined crypto function sub_155F0() is invoked at line
5, a "0" is passed as its third parameter. It means that Line
19 is not executed and function sub_15570() is being called,
and it generates a random string combine with time and PID,
the low-level crypto function crypt() is not misused.

1 signed int __fastcall sub_15270(const char
⁎a1, const char ⁎a2, const char ⁎a3,

int a4){
2 int v6,v8;
3 v6 = a4;
4 v8 = (int)getpwnam(a1);
5 if(sub_155F0(v8,v6 ,0)){
6 ...
7 }
8 ...
9 }

10

11 // self -defined crypto function

12 signed int sub_155F0(int a1, int a2, int
a3){

13 ...
14 int v3;
15 char ⁎v5;
16 v3 == a3;
17 ...
18 if(v3 == 1){
19 v5 = "$1$"; //not executed if v3 is 0
20 }else{
21 v5 = (const char ⁎) sub_15570 (); //use

time() and getpid () to generate
salt

22 }
23 v6 = (const char ⁎) sub_14E74 (&v11 ,v5);
24 }
25

26 char⁎ __fastcall sub_14E74(const char ⁎a1,
const char ⁎a2){

27 char ⁎v2;
28 v2 = crypt(a1,a2); //low -level crypto

function
29 ...
30 }

Listing 2: Dead code: D-Link DNS-326.

False negatives. Previous crypto misuse detection ap-
proaches [23,26,36,47] focus on mobile platforms, rather than
IoT devices. As a result, there is no immediate and labelled
dataset as ground truth to quantify the false negative. Despite
that, we manually checked the parameters of all crypto API
invocations (based on our crypto API dataset as shown in
Table 2) in 10 randomly selected firmware images in which
no misuse was reported, and we found no false negative.

4.5 Performance
Running CRYPTOREX on 1327 firmware images consumes 7
days and 3 hours (around 171 hours) in total. On average, each



Table 5: Performance analysis
Firmware
Model

Firmware
Size

# of
Analyzed

Files

Size of
Analyzed

Files

Time of
Unpack-

ing

Time of
CFCG

Construction

Time of IR
Lifting

Time of
ICFG

Construction

Time of
Taint

Analysis

Total
Time

E2500 7.0 MB 8 3.12 MB <1s 3s 10m39s 16s 2m 13m10s
mipsbe-6.42.9 10.7 MB 9 1.11 MB <1s 3s 1m52s 16s <1s 2m19s
mipsbe-6.43.2 11 MB 10 1.2 MB <1s 3s 2m12s 20s <1s 2m25s
FW_EA6350 16.2 MB 53 3.99 MB <1s 1m25s 5m18s 1m25s <1s 9m8s
FW_WRT1900ACv2 32 MB 66 5.4 MB 34s 1m36s 6m41s 2m2s <1s 11m15s
DSR-250_A2 25.8 MB 64 9.71 MB 3s 1m20s 11m39s 3m34s 4s 19m17s
DCS-960L_A1_FW 9.8 MB 144 6.3 MB <1s 31s 14m20s 1m52s <1s 16m19s
My_Cloud_KC2A 103.7 MB 120 26.73 MB 5s 1m57s 28m58s 9m42s 46m19s 98m53s
360P3 8.1 MB 61 4.6 MB <1s 8s 13m44s 1m45s <1s 15m43s
360POP-P1 6.7 MB 59 3.7 MB <1s 8s 26m3s 1m35s <1s 27m52s
B99_755025 5.9 MB 14 2.8 MB <1s 4s 10m22s 57s <1s 11m49s
IPC_V1.7 3.4 MB 1 0.03 MB <1s 1s 8s <1s <1s 12s
NC250_1.0.10 7.6 MB 13 5 MB 2s 1s 16m27s 56s <1s 17m45s
Archer_C9v1 15 MB 16 4.72 MB 1s 12s 4m58s 1m44s <1s 7m41s

firmware analysis only costs 1120 seconds (for 521 firmware
images that be successfully unpacked).

To understand which factors have significant contributions
to the performance, we selected 14 representative firmware
samples to investigate, which covers different situations. The
firmware selection is based on three factors – firmware size,
the number of analyzed files, and the size of analyzed files. In
Table 5, we show the information about the analyzed firmware
(i.e., the firmware size, the number of extracted files, the num-
ber and the size of executables that involve crypto) and the
time consumption of each step. It turns out that, in general,
IR lifting consumes most of the time. Additionally, we could
observe that the larger the size of the analyzed files is, the
more time it spends on ICFG construction. Moreover, the time
cost of taint analysis is related to the complexity of ICFG di-
rectly, especially the number of path branches. For example,
since My_Cloud_KC2A contains up to 26.73 MB files, it took
9m 42s to construct ICFG, and further spent 46m 19s on the
taint analysis (due to its complex ICFG).

On the other hand, since CRYPTOREX is the first work
focusing on the crypto misuse issue in IoT systems, it is
inappropriate to make a crosswise performance comparison
between our work and the previous ones on mobile platforms
(see Section §6.2 for more discussions).

4.6 Case Studies

To further understand the effectiveness of CRYPTOREX and
the risk of crypto misuse, we provide three case studies with
in-depth analysis.

4.6.1 Tomato Shibby Router

In the firmware of the Tomato Shibby router, CRYPTOREX
reported a crypto misuse that is also an authentication bypass
vulnerability. We list the vulnerable function in Listing 3. At

Line 5, function sub_2493C() invokes nvram_get() to get
the encryption key from the NVRAM parameter. However, if
such the parameter is not filled, the function will use "admin"3

as the default encryption key (Line 11, 14, and 19). In the
implementation of function crypt, if the second parameter
starts with “$1$”, it will combine the first parameter and the
second parameter as the key to encrypt a constant string and
output a token. This token will be further used in password
checking. This vulnerability could allow attackers to bypass
the authentication.

1 int sub_2493C ()
2 {
3 ...
4 char ⁎dest;
5 v3 = (const char ⁎) nvram_get("

http_passwd");
6 v4 = v3;
7 strcpy(dest , "$1$");
8 f_read("/dev/urandom", dest + 3, 6);
9 if ( v3 ){
10 if ( !⁎v3 )
11 v4 = "admin";
12 }
13 else {
14 v4 = "admin";
15 }
16 ...
17 v8 = fopen("/etc/shadow", "w");
18 if ( v8 ) {
19 v9 = crypt(v4, dest); //low -level

crypto function
20 fprintf(v8, "root:%s:0:0:99999:7:0:0:\

nnobody :⁎:0:0:99999:7:0:0:\n", v9)
;

21 ...
22 fclose(v8);

3It is also the default user password.



23 }
24 ...
25 sprintf( (char ⁎)&v11 ,
26 "root:x:0:0: root:/root:/bin/sh\n"
27 "%s:x:100:100: nas:/dev/null:/dev/null\n"
28 "nobody:x:65534:65534: nobody :/dev/null:/

dev/null\n", v6);
29 f_write_string("/etc/passwd", &v11 , 0,

420);
30 }

Listing 3: Vulnerable code: Tomato Shibby router.

4.6.2 Open-source File Server Netatalk

CRYPTOREX reported crypto misuses on several NAS
firmware images. Our further investigation shows that the
misuses all occur in the same shared open-source file server
called Netatalk. It supports five kinds of authentication ways,
which involve random number exchange and Diffie-Hellman
key exchange. As shown in Listing 4, for random number
exchange, the server uses the user password as a key to en-
crypt a generated random number and send it to challenge
the client. For this case, the ECB mode is used in the DES
algorithms (Line 7), which allows attackers to guess random
numbers and masquerade as legitimate users easily. In the
other function pwd_login() (Line 16) that executes Diffie-
Hellman key exchange to negotiate a shared key, we found
that a constant IV (Line 20) is used for the CBC encryption
(i.e., CAST_cbc_encrypt()). Without using random IV, at-
tackers can easily brute-force the user password.

1 /⁎⁎⁎⁎⁎ uams_randnum.so ⁎⁎⁎⁎⁎/
2 static int randnum_logincont(void ⁎obj ,

struct passwd ⁎⁎uam_pwd ,
3 char ⁎ibuf , size_t ibuflen _U_ ,
4 char ⁎rbuf _U_ , size_t ⁎rbuflen)
5 {
6 ...
7 DES_ecb_encrypt (( DES_cblock ⁎) randbuf ,

(DES_cblock ⁎) randbuf ,& seskeysched ,
DES_ENCRYPT);

8 ...
9 if (memcmp( randbuf , ibuf , sizeof(

randbuf) )) { /⁎ != ⁎/
10 return AFPERR_NOTAUTH;
11 }
12 ...
13 }
14

15 /⁎⁎⁎⁎⁎ uams_dhx_passwd.so ⁎⁎⁎⁎⁎/
16 static int pwd_login(void ⁎obj , char ⁎

username , int ulen , struct passwd ⁎⁎
uam_pwd _U_ ,

17 char ⁎ibuf , size_t ibuflen _U_ ,
18 char ⁎rbuf , size_t ⁎rbuflen)
19 {

20 unsigned char iv[] = "CJalbert";
21 ...
22 CAST_cbc_encrypt (( unsigned char ⁎)rbuf ,

(unsigned char ⁎)rbuf , CRYPTBUFLEN ,
&castkey , iv, CAST_ENCRYPT);

23 ...
24 }

Listing 4: Vulnerable code: Netatalk.

4.6.3 OpenSSL

To our surprise, CRYPTOREX also reported a crypto misuse
bug in the standard OpenSSL library. As Listing 5 shows, the
function EVP_BytesToKey() (Line 22) is used to generate
keys and IVs. This function is then invoked with its sixth
parameter being 1, which sets the round of iteration to 1. Such
an operation violates Rule 5, allowing attackers to perform
brute-force attacks to guess the keys and the IVs.

1 const OPTIONS enc_options []=
2 {
3 ...
4 {"k", OPT_K , ’s’, "Passphrase"},
5 ...
6 };
7 ...
8 int enc_main(int argc , char ⁎⁎argv)
9 {
10 while ((o = opt_next ()) != OPT_EOF)
11 {
12 switch (o)
13 {
14 ...
15 case OPT_K:
16 str = opt_arg ();
17 break;
18 ...
19 }
20 }
21 ...
22 if (! EVP_BytesToKey(cipher , dgst , sptr ,(

unsigned char ⁎)str , str_len , 1, key
, iv))

23 {
24 ...
25 }
26 ...
27 if (! EVP_CipherInit_ex(ctx , NULL , NULL ,

key , iv, enc))
28 {
29 ...
30 }
31 }

Listing 5: Vulnerable code: OpenSSL.



5 Discussions and Limitations

Though our framework achieves cross-architecture analysis
and discovered several cryptographic misuse cases in the wild,
there still exist some venues for improvements.

Firmware extraction. In our framework, the firmware will be
unpacked to obtain the executables. In the implementation,
this step is completed by Binwalk which is the de facto stan-
dard for firmware unpacking. However, Binwalk is not a silver
bullet for every firmware format: (1) If the firmware images
are packed with private compression algorithms which are not
covered by Binwalk, the unpacking will fail; (2) Furthermore,
if the firmware images are encrypted, Binwalk also cannot
unpack them without the correct decryption keys. As a re-
sult, due to the non-standard firmware formats, only around
39.3% of firmware samples can be unpacked successfully.
This situation limits the scope of our analysis.

Cryptographic function identification. CRYPTOREX uses the
API data coming from seven popular cryptographic libraries,
which have covered most cases. However, some developers
may implement cryptographic algorithms by themselves, i.e.,
non-standard implementations. The current mainstream cryp-
tographic function identification techniques in binary pro-
grams concentrate on dynamic analysis, especially comparing
the I/O relationships [14,35]. However, since CRYPTOREX is
static analysis solution, these techniques could not be applied
directly.

Dynamically generated data. During taint analysis, CRYP-
TOREX only covers the data stored in binary files. However, if
the vulnerable cryptographic parameters are generated dynam-
ically (e.g., received from the Internet or got from NVRAM),
CRYPTOREX cannot detect such misuse cases.

IoT apps. Except for firmware in IoT devices, some IoT ven-
dors also provide a mobile app (Android or iOS) to assist the
user in controlling the device. In our framework, we do not
cover the cryptographic misuse issues in these IoT apps. Some
previous work has proposed cryptographic misuse detection
solutions for mobile platforms (see Section §6.2).

Automatic repair. As the first step, our technique can iden-
tify crypto misuse in IoT devices automatically. However,
automated fixing the discovered crypto misuses remains a
challenge. One possible solution is to fix the misused func-
tion arguments and rewrite the executables automatically. We
leave this to future work.

6 Related Work

In this section, we review prior research about security analy-
sis of firmware and misuse of crypto functions.

6.1 Security Analysis of Firmware

In recent years, researchers have a strong interest in the se-
curity analysis of firmware in IoT devices [15, 16, 18–21, 25,
27, 39, 45, 48, 49]. On the one hand, prior studies have em-
phasized addressing the challenges in dynamic analysis and
static analysis of firmware. Regarding dynamic analysis, the
main challenge lies in the emulation failures caused by di-
verse architectures and unavailable NVRAMs. To this end,
researchers proposed different systems to support firmware
emulation [15, 49]. For instance, Chen et al. [15] proposed a
dynamic analysis tool which emulates the entire filesystem of
Linux-based firmware. Avatar [49] is a framework that orches-
trates the execution of an emulator with the real hardware, by
forwarding I/O accesses from the emulator to the embedded
devices. Apart from that, static firmware analysis also faces
the challenge of different architecture [16]. As a result, the
solutions to cross-architectural bug search have been widely
investigated [25, 27, 45, 48]. For example, Xu et al. [48] pro-
posed a neural network-based graph embedding system that
supports multiple firmware architectures and can significantly
speed up the vulnerability detection process. However, given
that those techniques are designed for discovering general vul-
nerabilities and focus on scalability, they are less inaccurate
for specific vulnerability types. On the other hand, another
direction aims to detect specific types of vulnerabilities. For
example, Costin et al. [19] performed a large-scale study and
found that nearly 10% of the collected firmware images con-
tain bugs in the web interfaces. Shoshitaishvili et al. [46]
proposed a model to describe the authentication bypass vul-
nerability of firmware. David et al. [20] presented an IR-based
static analysis solution for finding CVEs in stripped firmware
images, which is the most relevant work to our CRYPTOREX.
Nevertheless, none of the previous work has tackled the diffi-
culty in identifying crypto misuse of firmware.

6.2 Misuse of Cryptographic Functions

Previous work has noticed the problem of crypto misuse on
mobile platforms, say Android and iOS. However, how to
detect crypto misuse in IoT systems is an open question.

Egele et al. [23] were the first to perform a large-scale ex-
periment to measure cryptographic misuse in Android apps.
Their result showed 88% of tested apps made at least one
mistake. Wang et al. [47] analyzed crypto misuse issues in
Android native libraries. Muslukhov et al. [40] studied how
crypto APIs misuse in Android applications has changed be-
tween 2012 and 2016. It provides some updated findings, such
as significantly fewer libraries and applications were using
ECB mode in 2016. On the other hand, Ma et al. [37] pro-
posed an approach, CDRep, to automatically repair vulnerable
Android apps with cryptographic misuses.

Similarly, on the iOS platform, Li et al. [36] designed iCryp-
toTracer to check cryptographic usage, but the scale of their



dataset was quite small. Instead of inspecting a low-level
representation of a binary, Feichtner et al. [26] proposed an
LLVM-based approach to uncover cryptographic misuse in
iOS apps. The result shows that 82% of apps are subject to at
least one security misconception.

Also, more recently, Li et al. [34] proposed K-Hunt, a sys-
tem for identifying insecure keys in x86/64 executables. Dif-
ferent from the above work, CRYPTOREX focuses on the
crypto misuse problems in IoT devices. Also, it solves the
challenge of cross-architecture crypto misuse checking, not
just concentrating on a single platform.

7 Conclusion

In this paper, we introduced the automated cross-architecture
analysis framework CRYPTOREX, for detecting crypto-
graphic misuse bugs in IoT devices in a large-scale manner.
It utilizes an intermediate representation to solve the issue of
non-unified underlying architectures of IoT firmware. Follow-
ing this trail, in the design of CRYPTOREX, we developed a
series of practical techniques to achieve the purpose of reli-
able crypto misuse detection. Finally, we implemented CRYP-
TOREX and carried out experiments based on 1327 real-world
firmware image samples (from 12 vendors, in 7 different ar-
chitectures, 521 successfully unpacked ones). CRYPTOREX
successfully identified 679 crypto misuse cases, which demon-
strates the feasibility of our solution and sheds light on the
worrisome situation in today’s IoT development.
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