
Vetting Single Sign-On SDK Implementations via Symbolic Reasoning

Ronghai Yang1,2, Wing Cheong Lau1, Jiongyi Chen1, and Kehuan Zhang1

1The Chinese University of Hong Kong,
2Sangfor Technologies Inc.

Abstract

Encouraged by the rapid adoption of Single Sign-On
(SSO) technology in web services, mainstream identity
providers, such as Facebook and Google, have devel-
oped Software Development Kits (SDKs) to facilitate
the implementation of SSO for 3rd-party application de-
velopers. These SDKs have become a critical foun-
dation for web services. Despite its importance, little
effort has been devoted to a systematic testing on the
implementations of SSO SDKs, especially in the pub-
lic domain. In this paper, we design and implement
S3KVetter (Single-Sign-on SdK Vetter), an automated,
efficient testing tool, to check the logical correctness and
identify vulnerabilities of SSO SDKs. To demonstrate
the efficacy of S3KVetter, we apply it to test ten popular
SSO SDKs which enjoy millions of downloads by ap-
plication developers. Among these carefully engineered
SDKs, S3KVetter has surprisingly discovered 7 classes
of logic flaws, 4 of which were previously unknown.
These vulnerabilities can lead to severe consequences,
ranging from the sniffing of user activities to the hijack-
ing of user accounts.

1 Introduction

Single Sign-On (SSO) protocols like OAuth2.0 and
OpenID Connect have been widely adopted to simplify
user authentication and service authorization for third-
party applications. According to a survey conducted by
Janrain [29], 75% users choose to use SSO services, in-
stead of traditional passwords, to login applications. As a
conservative estimate in [49], 405 out of Top-1000 appli-
cations support SSO services, indicating that SSO login
has already become a mainstream authentication method
and still continues its strong adoption.

Motivated by the prevalence of SSO services, main-
stream Identity Providers (IdPs) like Google and Face-
book, have provided their Software Development Kits

(SDKs) to facilitate the implementation of third party
services (e.g. IMBD and Uber), which are referred to
as the Relying Parties (RP) under the SSO framework.

To further enhance flexibility, some high-profile open
source projects [3, 21] have integrated SSO SDK mod-
ules from different IdPs so that an RP application can
readily support multiple IdPs at the same time. These
SDKs are the core component of SSO services and have
enjoyed millions of downloads (see Table 1).

Typically, an SSO SDK provider would release the
source code of its SDK and provide documentations, to-
gether with simple usage examples. It then leaves the
rest to the RP developers. Without fully understanding
the SDK internals, most RP developers simply follow
the sample codes to invoke the SDK functions. As such,
one important question is that: Is an SSO SDK itself se-
cure? Note that if the internals of a SDK already contain
vulnerabilities, then all RP applications using the vulner-
able SDK become susceptible. Given the popularity of
these SDKs and the nature of SSO services, any secu-
rity breach can lead to critical implications. For exam-
ple, an attacker may be able to log into billions of user
accounts [48].

The goal of this work is to systematically test whether
an SSO SDK is vulnerable by itself. We will focus on
the logic vulnerabilities of a SDK, which allow an at-
tacker to log into RP applications as a victim. To the
best of our knowledge, this is the first work to ana-
lyze the SSO SDKs. Most existing work on SSO se-
curity does not analyze the code of the SSO system,
let alone the SDK. More specifically, there are mainly
two types of work in the literature. The first type rea-
sons about the specification of the standard SSO pro-
tocols [23, 39] by different methods including model
checking [5,7,15,19], cryptographic proof [11] and man-
ual analyses [34]. The other type aims to discover vulner-
abilities of real-world SSO implementations via network
traffic analysis [43, 44, 47, 48] and large-scale automated
testing [18,33,49,51]. The former does not care about the

SSO implementation, and the latter treats the implemen-
tation as a black box. Consequently, both cannot detect
logic flaws buried deep in the SSO SDKs.

To this end, this paper introduces S3KVetter, a tool
which automatically identifies vulnerabilities in the SSO
SDK internals. Our key insight is to leverage dynamic
symbolic execution, a widely used technique for pro-
gram analysis (e.g., [9, 22]), to track feasible execution
paths and the associated predicates of the SSO SDK un-
der test. For each path, S3KVetter then utilizes a the-
orem prover1 to check whether the predicates violate
SSO security properties. Although these techniques have
been heavily studied, they cannot be directly applied to
SSO-like applications due to the multi-party nature and
multiple-lock-step operations of SSO services. We have
thus developed new techniques including request order
scheduling and multi-party coordination for this kind of
multi-party applications.

We have implemented a full-featured prototype of
S3KVetter and applied it to check 10 popular SSO SDKs.
These SDKs are all carefully engineered and enjoy a
large number of downloads (see Table 1). They support
different SSO protocols (OAuth2.0 or OpenID Connect)
and various grant flows (authorization code flow and im-
plicit flow). To our surprise, S3KVetter has discovered,
among these security-focused SDKs, 7 classes of seri-
ous logic vulnerabilities and 4 of them are previously un-
known. The security impact can range from sniffing user
activities at the RP, to the total hijacking of the victim’s
RP account. In summary, we have made the following
contributions:
• Measurement study and new findings. We have sys-

tematically conducted an in-depth security analy-
sis on 10 commercially deployed SSO SDKs, the
first of this kind. We discover 7 types of serious
logic vulnerabilities, 4 of which are previously un-
known. We demonstrate these vulnerabilities can
lead to critical security implications. Our findings
show that the overall security quality of SSO SDKs
(and thus their deployment) is worrisome.
• Effective vulnerability detection for distributed sys-

tems via symbolic reasoning. We have designed and
implemented S3KVetter to perform security anal-
ysis of SDK internals based on dynamic symbolic
execution and a theorem prover. In particular, we
develop a set of new techniques, including sym-
bolizing request orders and multi-party coordina-
tion, to improve symbolic execution for multi-party
distributed systems with multiple-lock-step interac-
tions.

The remainder of this paper is organized as follows:
Section 2 introduces the background. Section 3 presents

1We will use the terms theorem prover, constraint solver and Satis-
fiability Module Theories (SMT) solver interchangeably.

RP server Client device IdP server
1) Req0: User visits RP

 2) redirect_uri+state (optional)
3) User authentication and

grant permission

5) Req1: code + state 4) code + state (optional)

e.g

7) access token + refresh token (optional)

6) access-token req: code + client_id + client_secret

9) user data
8) user-profile req: access token + client_secret (optional)

 10). Req2: user profile req
 11). user profile

Figure 1: OAuth 2.0 authorization code flow
• Dash lines represent symbolic links that can be controlled by an attacker.

the overview of S3KVetter. Section 4 discusses its de-
tailed design. Additional implementation considerations
are given in Section 5. We evaluate the performance of
S3KVetter in Section 6 and detail the discovered vulner-
abilities in Section 7. We discuss the lessons learned in
Section 8 and summarize related works in Section 9. We
conclude the paper in Section 10.

2 Background

OAuth2.0 [23] and OpenID Connect [39] (OIDC) have
become the de facto SSO standard protocols. Therefore,
in this paper, we only focus on these two protocols2. In
an SSO ecosystem, there are three parties: a User, a Re-
lying Party server (RP server) and an Identity Provider
server (IdP server)3. The goal of SSO services is to al-
low the user to log into the RP via the IdP. To achieve
this goal, the IdP issues an access token (as in the case
of OAuth2.0), and sometimes together with an id token
(as in the case of OIDC), to the RP so that the latter can
retrieve the user identity information hosted by the IdP.
To complete the process, both SSO protocols have de-
veloped multiple authorization grant flows, but only two
of them, namely, the authorization code flow and the im-
plicit flow, are commonly deployed in practice. While
S3KVetter supports both protocols and both authoriza-
tion flow types for the web and mobile platforms, we use
the authorization code flow of OAuth2.0 under the web
platform as the running example throughout this paper.

2.1 Authorization Code Flow of OAuth2.0
Fig. 1 presents the authorization code flow of OAuth2.0.
At a high level, the call flow consists of the following five
phases:

I. (Step 1-3) The user initiates the Single-Sign-On
process with the RP and gives the IdP his approval
regarding the permissions requested by the RP;

2We use SSO to represent these two protocols, if not specified oth-
erwise.

3For the ease of presentation, we use the terms IdP server and IdP,
as well as, RP server and RP interchangeably.

Module 1: Extracting Program Predicates

Compiled
SDK Concolic Execution Predicate

Translator
Theorem
Prover

Multiple Party
Coordination

Violations

Security
Properties

Extracted
Predicates

Request Order
Scheduling

Module 2: Translating Predicates Module 3: Reasoning Predicates

Figure 2: S3KVetter architecture

II. (Step 4-5) The IdP returns an intermediate proof
(code) to the RP via the user;

III. (Step 6-7) The RP approaches the IdP with this
proof and its own credentials to exchange for an ac-
cess token ;

IV. (Step 8-9) The RP can then use this token to access
the information of the user hosted by the IdP ;

V. (Step 10-11) The user can then access his informa-
tion hosted by the RP.

Refer to Appendix A for detailed descriptions of the in-
dividual steps in Fig. 1. Notice that, from the perspective
of the RP, the messages exchanged in Fig. 1 are typically
handled by the SSO SDK. While we will use Fig. 1 as an
illustrative example throughout this paper, our work ac-
tually goes beyond Fig. 1. For example, we will discuss
the vulnerability associated with MAC key (Section 7.4)
that is not presented in Fig. 1.

3 Overview

In this paper, we focus on analyzing the authentication
issues of an SSO SDK. In particular, we use S3KVetter
to analyze whether the implementation of a target SDK
contains errors that would allow an attacker to login as
victims. It is worth to note that S3KVetter can also be
extended to study the security of other multi-party appli-
cations like payment services as discussed in Section 6.5.

Threat Model
We assume the attacker has the following capabilities:
(1) The attacker can lure the victim to visit a malicious
RP (mRP)4. (2) The attacker can setup an external ma-
chine and use his/her own account to freely communicate
with the client, IdP and RP server. (3) If the victim does
not use HTTPS, the attacker can eavesdrop the commu-
nication of the victim’s client device. Besides that, the
attacker does not have any other advantages (e.g., he/ she
does not have the source code or binary executable of the
remote IdP server).

4For the web platform, mRP is a malicious web page. For mobile
platforms, mRP can be an APK file installed on the victim’s mobile
device. Regardless, mRP does not require any privileged permissions.

System Architecture
Fig. 2 presents the high-level system architecture of
S3KVetter, which contains three components: an ex-
tended concolic (dynamic symbolic) execution engine, a
predicate translator and a theorem prover. The concolic
execution engine aims to explore the target SSO SDK
exhaustively and output all the feasible program paths in
the form of a predicate tree. To support formal reasoning,
the predicate translator then expresses this predicate tree
using a precise syntax that lends itself to precise seman-
tics. Finally, taking the translated predicate tree and our
manually developed list of security properties as inputs,
the theorem prover reasons about each program path for
security property violation. If there is no satisfiable so-
lution, then the SDK is considered to be secure. Other-
wise, the theorem prover outputs the concrete inputs (in
the form of SSO handshake messages and parameters)
that can trigger the violation.

Local RP
serverRemote

Identity
Provider

(IdP)

 S3KVetter

Client device

Attacker

Open Source
SDK

under Study

Figure 3: The Role of S3KVetter

Fig. 3 shows the setup of the overall system in which
S3KVetter simulates the client device to communicate
with the RP server (i.e., SDK) and IdP server. S3KVetter
also acts as the attacker to intercept and manipulate the
victim’s messages (e.g., via malicious RP or eavesdrop-
ping). These messages are then fed to the SDK for sym-
bolic exploration. Since the open-source SDK is freely
available online, the analyst can build a local RP server
to symbolically explore the SDK.

4 Design of S3KVetter

In this section, we present the innovations introduced by
S3KVetter to tackle the special technical challenges of
testing multi-party systems with multiple-lock-step oper-
ations. We will also illustrate how conventional dynamic
symbolic execution schemes, without our extensions, can
incur false positives, miss bugs, or get stuck at shallow,

non-core error-processing paths, when analyzing multi-
party protocols/ systems.

4.1 Symbolic Exploration of SDKs
Based on dynamic symbolic execution, S3KVetter can
track how the operations on specific symbolic fields/
variables affect the final computation result. We lever-
age these messages to build a so-called symbolic pred-
icate tree. One example is presented in Fig. 4, which
represents the conditional-checkings of the Request-
OAuthLib SDK [3], a popular SSO SDK. Here, the non-
leaf nodes in the tree represent symbolic constraints en-
forced by the corresponding path, and the leaf nodes rep-
resent the final computation results (e.g., an access to-
ken or the identity of a logged-in user in the context of
SSO). For the ease of presentation, we have simplified
the tree by omitting numerous branches, nodes and re-
moving multiple constraints (shown as dashed lines in
the figure). This SDK involves 649 different execution
paths5, which would require laborious manual effort by
testers/ developers to generate. By contrast, S3KVetter,
leveraging high-coverage symbolic execution, automati-
cally explores different corner-case situations.

Intuitively, the symbolic predicate tree has captured
rich semantic information: The leftmost path in Fig. 4
corresponds to the case where the user skips Req0 (i.e.,
Step 1 in Fig. 1) and directly sends Req1 (Step 5) to the
SDK. Upon receiving Req1, the SSO SDK under test
first checks whether the communication uses HTTPS,
followed by verifying the existence of a code parameter
in the URI. If these conditions are satisfied, the SDK will
send an access-token request (Step 7) to the IdP server.
Such semantic information is essential and effective for
vulnerability detection. For example, this leftmost path
does not check the state variable but still allows a user
to login successfully. This corresponds to the vulnerabil-
ity of use-before-assignment of the state variable, as to
be detailed in Section 7.3.

4.1.1 Symbolizing Request Orders

An SSO system requires multiple interactions with the
user to complete a task (e.g., authentication and autho-
rization). To be realistic, S3KVetter should allow at-
tackers to randomly and symbolically select execution
orders such as making out-of-order requests, skipping/
replaying requests. Although existing symbolic execu-
tion studies [10, 31, 40] have proposed different tech-
niques to support asynchronous event/ request orders,
they require expert-level domain knowledge of the ap-
plication under test to provide all the possible external

5We only consider OAuth-related paths without counting those non-
core paths, e.g., those related to encoding.

start

Req1[state]
= state

Req1[uri].
startwith(‘https://’)

code in uri

post(code)

return uid

return None

not Req0Flag Req0Flag

 simplified path
 network call
path constraint

var symbolic variable

...

...

not refresh_token
in Req1

not code in uri

not Req1[uri].
startwith(‘https://’)

 return uid

Figure 4: One example of symbolic predicate tree

events (e.g., atomic rule updates and flow independence
reduction for OpenFlow application [10]). In short, their
approaches cannot be readily generalized for other ap-
plications. more thoroughly, S3KVetter should allow at-
tackers to randomly, symbolically select execution orders
such as making out-of-order requests, skipping/ replay-
ing requests.

We develop a general and simple scheduling algo-
rithm, which does not require any application-specific
heuristic from the analyst, to systematically explore ex-
ecution paths by generating inputs and schedules (i.e.,
request orders) one by one. The algorithm first guides
S3KVetter to run the SDK under test with the sample in-
put and the normal schedule. Then the algorithm does the
following loop to sweep possible schedules and feasible
program paths: (1) it tries to explore all the feasible pro-
gram paths of the SDK under the selected schedule; (2)
it then generates a new schedule with the goal to explore
different program paths.

The remaining issue is to generate a new schedule
based on the normal one. Recall that we are interested in
the authentication property only, which is typically com-
pleted by the last request in the call-flow. Therefore, all
of our generated schedules end with the last request. We
use Fig. 5, which contains three requests Req0, Req1 and
Req2, to illustrate how to generate a new schedule as fol-
lows:

1. Develop the power set of the normal execution order
and exclude the empty set or those subsets which do
not contain the last request. The resultant schedule
includes: {Req2}, {Req1,Req2}, {Req0, Req2},
{Req0, Req1, Req2}

2. Consider the ordering in the remaining subsets. For
example, a subset {Req0, Req1, Req2} can mean
two possible execution orders: {Req0, Req1, Req2}
and {Req1, Req0, Req2}. Note that we keep the
order of the last request (i.e., Req2).

3. Put all the well-ordered subsets into a scheduling
queue. For Fig 5, we have 5 schedules in total.

The intuition behind this scheme is that S3KVetter

Req0

Req1

Req2 Req2 Req2

Req1

Req2

Req0

Req2

Req0

Req1

Input Schedule 1 Schedule 2 Schedule 3 Schedule 4
Time

Sequence

to bypass logic checks to break multi-step
operation

Figure 5: Scheduling for out-of-order requests

attempts to skip any important logic check, break the
multi-step operations or replay requests (as can be seen
in Figure 5). For example, the schedule of {Req1, Req2}
guides S3KVetter to skip the first request, a key mile-
stone of the SSO business process, which leads to the
discovery of the vulnerability of use-before-assignment
of the state variable (Section 7.3). Another important
feature is to break/ subvert the order of requests (e.g.,
{Req1, Req0, Req2}), which can lead to the so-called
“failure to revoke authorization” problem [49]. Finally,
the replay function is achieved since every schedule (e.g.,
{Req2}, {Req1,Req2}) will start to explore the SDK
with the same requests (where Req2 is replayed).

Note that S3KVetter will not generate a complete set
of request orderings since an attacker, in theory, can gen-
erate infinite number of request orderings, e.g., by repeat-
ing each request arbitrary number of times. However,
according to our experience, the scheduler we incorpo-
rated into S3KVetter can generate a rich set of promising
patterns/ request orderings. Nonetheless, with the frame-
work of S3KVetter, it is relatively straightforward to in-
corporate additional patterns, if any, developed in the fu-
ture.

4.1.2 Coordinating among Multiple Parties Silently

SSO applications need to communicate among multi-
ple parties. Unfortunately, existing symbolic execution
frameworks are not designed for distributed multi-party
systems. To fill this gap, researchers actually have devel-
oped different approaches, but none of them work per-
fectly for SSO-like applications. The key problem of
existing solutions is that different parties have different
views of the entire system status if we break the request
orders. The case becomes worse in the existence of one-
time-use parameters (e.g., code, state, etc.). Below we
illustrate the limitations of existing approaches.

The first approach is to concretely run the external
functions. However, since the IdP server typically im-
poses limit on API access rate, a large number of invoca-
tions of the external functions can easily hit the control
threshold and lead to unexpected responses. Worse still,
the widely used one-time-use parameters cannot be cor-

rectly generated/ processed in the case of symbolizing
request orders. We take the code variable as the exam-
ple to illustrate the problem. With Req0 (i.e., Step 1 of
Fig. 1), S3KVetter can get a code from the IdP in Step
4 (note that S3KVetter simulates the client device). If
S3KVetter skips this request and directly sends Req1, to
exchange for an access token in Step 6, S3KVetter has no
choice but to either use an old value or locally generate
a seemingly legitimate code. For both cases, the IdP re-
turns error since the code should be generated by the
IdP server and can only be used for once. As such, the
first approach will get stuck in non-core error-processing
paths.

The second solution is to check the return type of the
external function and then returns a random value of
this type without executing the external functions (e.g.,
DART [22]). However, this solution can lead to false
positives. Consider the example above, even when a
code is already used, DART may still return an access
token string (instead of an error message) to the SDK. In
this case, the testing tool may report a false positive: An
attacker can use an old code to login. The third approach
(e.g., KLEENet [40]) is to symbolically explore the ex-
ternal functions as well. However, this is not a viable
approach for our case as we do not have the source code
or binary of the remote IdP server to support symbolic
exploration.

Solution. Due to the different views perceived by
different parties, some requests with nonce parameters,
which are considered to be legitimate by the RP, may
be rejected by the IdP. To tackle such inconsistency,
S3KVetter concretely simulates, and more importantly,
modifies, the entire external world for the SDK under
test. Specifically, S3KVetter analyzes the IdP behaviors
and directly responds to the RP SDK as if it is the IdP. In-
stead of strictly following the IdP’s behaviors, S3KVetter
modifies the response so that every party has the same
synchronized view on the global system state. To be
more specific, S3KVetter simulates a slightly different
IdP as follows:

1. Once a nonce parameter is consumed, S3KVetter,
unlike the real-world IdP server, will first generate
a new nonce value internally.

2. When S3KVetter starts to explore another path, it
will first check whether the previously generated
nonce value satisfies the constraints of the path to be
explored or not. If so, directly use this new value.

3. Otherwise, S3KVetter checks the local SDK condi-
tions related to this nonce. Therefore, it uses the
value solved by the constraint solver and stores the
previously generated value for later use.

Since S3KVetter drives the SDK execution, the status
of the SDK is closely tracked by S3KVetter. Therefore,
S3KVetter can internally force its simulated remote IdP

start

Req1[uri].startwith(‘https://’)

code in uri

post(code)

return uid

not RT in Req1

not code in uri

post(code’)

post(none)

return errorPath1

Path2

Path3
return uid

w/ or w/o Req0

Figure 6: Illustration of multiparty coordination

server to synchronize its own state with the SDK. As
such, both parties can automatically share the same view
without any code changes by the SDK. Below, we illus-
trate this idea with the code example.

Code Example: Fig. 6 illustrates how S3KVetter
can coordinate multiple parties with the code example.
Through Path1, the RP can obtain the user information
with a fresh code. Upon completion of Path1, the used
code is invalidated. But at the same time, S3KVetter
dynamically generates a new random code′. When ex-
ploring Path2 (where we skip Req0), S3KVetter finds
that code′ satisfies the path constraint (code′ 6= None)
and therefore provides the code′ for the SDK. Now this
code′ is pre-generated and becomes valid. For Path3,
S3KVetter finds that this path requires len(code) = 0.
As such, S3KVetter provides an empty value solved by
the constraint solver for the SDK (and puts another on-
the-fly generated code′′ aside).

Implementations: The implementation requires to
model the IdP server so that S3KVetter, in most cases,
can rely on the SDK as the real IdP. One key observation
is that IdPs typically follow the specification and provide
similar functions. Therefore, we just need to model one
IdP server, and the resultant model can work for multiple
SDKs. The implementation involves two major steps.
The first step is to infer and model the real-world IdP
behaviors, which turns out to be not that challenging.
On one hand, we follow existing work [5, 46] to per-
form blackbox differential fuzzing analysis (i.e., under
different input arguments and app settings) for a better
understanding of the conditional checking enforced by
real IdPs. On the other hand, we also refer to the proto-
type IdP implementations provided by some open source
projects [17]. Second, we implement stub methods for
all the common network API methods of Python (e.g.,
requests, urllib, etc.). Upon any network requests, our
instrumented functions are invoked instead and reply the
SDK on behalf of the IdP server.

4.2 Translating the Predicate Tree
To support formal reasoning, we should translate the ex-
tracted tree (e.g., Fig. 4) to a set of Boolean logic for-
mulae. Given the simple syntax of logic languages (e.g.,
SMT-Lib v2.0), the translation is relatively straightfor-
ward. We also observe that every node in the predicate
tree can be readily represented as a logic formula. Ob-
serve from Fig. 4 that the node which checks whether
uri contains a code parameter can be represented as
(str.contains uri code) in the language of SMT-Lib.
To get the final computation result (i.e., reach the leaf
node), all the node logic formulae from the root to the
target leaf node should be satisfied. Therefore, a pro-
gram path can be represented as the conjunction of all
the node logic formulae along this path. Similarly, we
can use the disjunction of all the path logic formulae to
represent the entire predicate tree.

4.3 Reasoning Predicates
The goal of S3KVetter is to detect flawed SDK imple-
mentations by checking the logic in the SDK internals.
To achieve this goal, we may proceed in two ways. The
first is to model all the incorrect logic patterns. However,
it is difficult to generate such an exhaustive list. There-
fore, we take an alternative approach by modeling the
correct logic that should be enforced by the SDK. Then
we can check whether the SDK under test follows these
logical conditions or not.

4.3.1 Defining Security Property

An SSO system involves interactions among the user,
the RP server and the IdP server, where any weak com-
munication links (i.e., 11 steps in Fig. 1) can lead to
logic flaws. It is difficult to develop the security require-
ments for each link since neither protocol specification
nor developer documentation explicitly defines the secu-
rity goal for each method/ API call. Typically, the de-
veloper guidelines instruct a party to complete a set of
operations and hope that the final security guarantee can
be automatically reached by these operations. It is there-
fore more intuitive to define the final security goal (i.e.,
authentication property) for the RP server, which is the
focus of this paper.

In particular, we have one key observation to secure
the Single Sign-On service: An RP server should login a
user if and only if the exact user has actually authorized
this specific RP. To be more specific, an RP server can
accept a user’s login request in Step 5 of Fig. 1 if and
only if the exactly same user has authenticated and/or
authorized this specific RP in Step 3. Given this insight,
we develop the predicates which must be satisfied by a
secure SSO transaction, as presented in Listing 1.

The clause in Line 1 (Clause 1) asserts that the user
stored by the RP session should be the owner of the re-
ceived access token, so does the code and refresh token
(if exist) in the second and third clauses. Clause 4 and
Clause 5 assert that the access token and refresh token
(if any) should be correctly passed to the intended RP,
not to any other RPs (which would then use this token
to log into this RP illegally). Clause 6 reflects the re-
quirements that the final logged-in user should be the one
who authenticates/ authorizes with the IdP. We know that
S3KVetter simulates the IdP behavior. Therefore, the
IdP’s session data can be readily accessed by S3KVetter.

Listing 1: Security Property for SSO Services6

1 RPsession.uid == TokenRecordsOnIdP[
RPsession.access_token].uid and

2 RPsession.uid == CodeRecordsOnIdP[
RPsession.code].uid and

3 RPsession.uid == TokenRecordsOnIdP[
RPsession.refresh_token].uid and

4 client_id == TokenRecordsOnIdP[RPsession
.access_token].client_id and

5 client_id == TokenRecordsOnIdP[RPsession
.refresh_token].client_id and

6 RPsession.uid == IdPsession.uid

By checking against the required list of security prop-
erties, one can effectively expose the presences of nu-
merous vulnerabilities. Any violation of a security prop-
erty can lead to a vulnerability in practice. For exam-
ple, if Clause 1 does not hold, then it means the RP does
not use the access token to identify the user, which can
make profile attacks [47] possible. A more elaborated
example is Clause 6, which can be violated in two dif-
ferent cases: (1) it is possible that an attacker eaves-
drops the victim’s code and uses it to sign into the RP
(i.e., RPsession.uid = victim and IdPsession.uid =
attacker) ; (2) it can also be the result of a CSRF attack,
in which the attacker makes the victim’s browser to send
the RP a crafted request with the attacker’s code (i.e.,
RPsession.uid = attacker and IdPsession.uid =
victim).

5 Implementations of S3KVetter

We have implemented a full-featured prototype of
S3KVetter in Python with 5064 lines of code. While
its current implementation only focuses on SSO SDKs
written in Python, our techniques can be naturally ap-
plied to SDK developed in other languages. To avoid
reinventing the wheel, we have integrated and extended
several open-source programs as supporting modules for
S3KVetter. In Module 1 of Fig. 2, we extend PyExZ3 [6],

6For ease of presentation, we use the line number to represent the
clause. For example, the clause in the first line is denoted as Clause 1.

a concolic execution engine for Python, to enhance the
extraction of program predicates from production-level
SDKs. We also substitute the default constraint solver
of PyExZ3 (Z3) with CVC4 because the latter has better
support for our heavily-used string operations with neg-
ligible performance penalty7. For Module 2 in Fig. 2, we
choose SMT-Lib v2.0 which uses first-order logic with
quantifier to represent the translated predicate tree. The
logic language provided by SMT-Lib is not only expres-
sive enough but also widely accepted by most theorem
provers. This also allows us to directly use CVC4 in
Module 3 of Fig. 2 to reason about the program predi-
cates.

6 Evaluation

To determine the effectiveness of our approach, we per-
form evaluations on ten popular Single-Sign-On SDKs.
S3KVetter shows considerable improvement in terms of
code coverage when comparing to an unmodified sym-
bolic execution engine (without our proposed extensions
and heuristics). More importantly, we uncover four types
of previously unknown vulnerabilities and provide new
insights of SSO services.

6.1 Dataset

Table 1 shows the statistics of the SDKs under test.
These SDKs are carefully selected from official refer-
ences and high-profile open source SDKs in Github. In
particular, they have covered the two most popular pro-
tocols (i.e., OAuth2.0 and OpenID Connect) and both of
the widely used authorization grant flows, namely, the
implicit flow and the authorization code flow. The num-
ber of downloads for each SDK was retrieved on Oct
2017 from PyPI statistics [2] – a website which provides
runtime statistics of PyPI published packages. Note that
these statistics provide a conservative estimate on the us-
age of these SDKs: only the installation of released ver-
sion via pip counts. If developers install a SDK directly
from its source code (e.g., via official webpage or Git),
the suggested way for many IdPs (e.g., Facebook, We-
ichat, Renren, Douban), then the installation will not be
included in the statistics.

Regarding the lines of code, some libraries (e.g.,
Request-OAuthLib and OAuthLib) are considerably
larger. This is because those SDKs provide general-
ized, full-featured and specification-compliant support
for multiple IdPs. In contrast, some small SDKs only
implement simple and basic functions for a specific IdP.

7CVC4 and Z3 perform very similarly in different benchmarks dur-
ing the Satisfiability Module Theories (SMT) competition [4].

Table 1: Statistics of SDK under Study

SDK Names Lines of
code

of
downloads

Grant flow
under study

Baseline with unmodified PyExZ3 Improved result with S3KVetter
of path
discovered

statement
coverage

branch
coverage

of bugs
discovered

of path
discovered

statement
coverage

branch
coverage

of bugs
discovered

Facebook SDK 976 602,291 implicit 8 45% 37% 2 40 58% 56% 2
Request-OAuthLib 15432 4,785,778 code 322 37% 31% 0 649 42% 35% 2
OAuthLib 17917 6,476,894 code 640 41% 33% 1 1282 46% 39% 5
Sinaweibopy 800 28,019 code 2 43% 39% 2 6 47% 44% 2
OAuth2Lib 971 not found code 2 73% 68% 0 4 83% 77% 1
Rauth 9241 487,275 code 2 41% 34% 2 14 43% 36% 2
Python-weixin 2736 1,404 code 2 32% 29% 2 6 38% 35% 2
Boxsdk 15277 77,074 code 2 44% 37% 2 12 55% 47% 2
Renrenpy 251 10,387 code 2 54% 46% 1 12 56% 50% 1
Douban-client 2092 30,601 implicit 1 49% 52% 2 2 62% 60% 3

• 1: Facebook SDK supports OIDC, and the other SDKs support OAuth2.0 protocol.

6.2 Experiment Setup and Performance
We run S3KVetter on an LXC instance of a Ubuntu 14.04
machine with 8 core CPU and 64GB memory. The test-
ing of each SSO SDK can be completed within 5 sec-
onds. Such runtime efficiency of S3KVetter can be at-
tributed to the following 2 design decisions: Firstly, we
internally simulate the external parties and thus spare
S3KVetter from executing the most time-consuming net-
work requests. Secondly, we concretely execute non-
core methods. As such, the number of paths to be ex-
plored as well as the complexity of path constraint to
be solved are significantly reduced. Without these two
heuristics, it can take several minutes for testing even a
small SDK.

6.3 Program Coverage
S3KVetter is able to overcome the fundamental weak-
ness of traditional symbolic execution when dealing with
multi-party, asynchronous distributed systems. By that,
we mean that, when a conventional symbolic execution
engine is unable to obtain correct/ meaningful results
(e.g., code) from external parties (and thus gets stuck
in error-processing paths), S3KVetter can either “gener-
ate” valid results, or schedule to other paths, to continue
exploring meaningful paths beyond the error-processing
paths. Therefore, as shown in Table 1, S3KVetter can
achieve 2%-13% higher statement coverage and 2%-19%
higher branch coverage for the SDKs under test. Such
coverage data is measured by coverage.py [1]. While in-
creasing the code coverage by modifying a limited set
of inputs is increasingly harder for higher values, even
small increases in code statements can significantly dis-
cover more program paths.

Despite the improvement, we note that S3KVetter is
far from achieving 100% coverage. This is in line with
our expectation for two reasons: Firstly, a SDK often
contains functions beyond the scope of SSO (e.g., adver-
tisement, notification, etc.). For example, Facebook has
developed over 80 functions in their Graph API to sup-

port data ingestion and interchange for the Facebook’s
platform. These functions therefore are not considered
by S3KVetter. Secondly, only a limited set of inputs
(e.g., Step 1, 5 and 10 in Fig. 1) can be controlled by an
attacker. With such limited capability, the attacker can
only reach part of the code statements. Since S3KVetter
cannot reach more paths than the attacker, incomplete
coverage is expected.

6.4 Vulnerabilities Discovered

As presented in Table 2, S3KVetter has found 7 types of
vulnerabilities among these SDKs. While some vulner-
abilities have been well studied in the literature, four of
them are uncovered by S3KVetter for the first time. The
damages of these newly discovered vulnerabilities vary
depending on the specific implementations. The security
impact can range from sniffing user activities at the RP,
to the hijacking of the victim’s RP account. There is only
one requirement for the exploitation of these vulnerabil-
ities8: the attacker needs to setup a malicious RP (mRP)
and lure a victim user to login to the mRP. Once this con-
dition is satisfied, the attacker can remotely control the
victim’s account of any RP which uses the vulnerable
SSO SDK. We detail these newly discovered vulnerabil-
ities in Section 7.

6.4.1 Detection Accuracy

We have manually verified all the reported vulnerabili-
ties and found no false positive. However, S3KVetter can
contain false negatives (like the state-of-the-art symbolic
analysis techniques) for two main reasons. Firstly, our
developed security property only focuses on the authen-
tication issues. Yet, there may be other important prop-
erties. Secondly, S3KVetter may not be able to explore
all execution paths due to the following limitations:

8For the use-before-assignment of the state variable, the require-
ment is even simpler: the victim just needs to visit a malicious web
page.

Table 2: Summary of Discovered Vulnerabilities

SDK Existing classes of vulnerabilities New classes of vulnerabilities
Token

substitution
no check of

TLS
misuse or

no use of state
use-before-assignment

of state variable
Bypass MAC
key protection

refresh token
injection

access token
injection

Facebook SDK N Y Y N.A N.A N N
Request-OAuthLib N N N Y N.A Y N
OAuthLib Y N Y N.A Y Y Y
Sinaweibopy N Y Y N.A N.A N N
OAuth2Lib N N Y N.A N.A N N
Rauth N Y Y N.A N.A N N
Python-weixin N Y Y N.A N.A N N
Boxsdk N Y Y N N.A N N
Renrenpy N N Y N.A N.A N N
Douban-client Y Y Y N.A N.A N N

• The underlying SMT solver assumes a query does
not have a feasible solution when it takes too long to
solve. However, it can be the case that the constraint
under query is too complex. We cannot cover those
feasible paths related to such a complex constraint.
• PyExZ3 uses class inheritance to track program ex-

ecution. However, if the SDK explicitly casts the
input data to native data type, PyExZ3 will lose the
control for this variable (We seldom observe such
cases in practice though).
• We concretely run non-core methods (e.g., URL-

encode) and do not check whether these non-core
methods contain bugs.

6.5 Usability
It is straightforward to apply S3KVetter on an SSO
SDK. Only two manual steps are required by an analyst.
Firstly, the analyst should build a sample app, based on
the SDK under test, so that S3KVetter can actually exe-
cute/ explore the app and thus the target SDK. Thanks to
the widely available developer documentation and offi-
cial sample codes, this step is relatively straightforward.
Secondly, the analyst should mark which functions can
be reached by which part of the attacker’s input9. Al-
though there can be thousands of functions in a SDK ,
the attacker usually can only reach very few of them. For
example, only three functions of the Request-OAuthLib
SDK can be directly invoked by an attacker. Given the
small number of these functions, it becomes trivial to
identify which part of the user inputs is symbolic. For in-
stance, the Request-OAuthLib SDK authenticates a user
only based on the variable of request.url. Therefore,
only this variable is marked as symbolic (one example
can be found in Appendix B). The other variables like
cookies and HTTP headers, though controllable by an
attacker, are treated as concrete since they are not pro-
cessed by the SDK of interest.

9While we assume an attacker can control all packets sent to the RP
server, only part of these packets would be processed by the SDK.

To apply S3KVetter on other multi-party systems, one
additional manual step is to develop the required security
properties (i.e., the counterpart of Listing 1) for the spe-
cific domain of applications. Fortunately, the required se-
curity properties are high-level in nature and do not need
to be developed by a domain expert. For example, the list
of the required security properties for payment services
can be developed by codifying the following statement:
A merchant M should accept an order if and only if the
user has paid to the cashier in the correct amount for
that specific order associated with merchant M.

Note that the developed scurity property is not neces-
sarily an exhaustive list of all protocol states. In fact,
the analyst is free to specify the properties of interest.
For instance, if an SSO system only supports the im-
plicit call-flow (where the code variable is not involved),
Clause 2 in Listing 1 is no longer needed. Note also that
S3KVetter is agnostic to how the security properties are
derived. While other researchers have managed to au-
tomatically extract the required security properties from
the source code [5] or protocol specification [16], their
results are complementary to ours and can be adopted to
further extend the capabilities of S3KVetter.

6.6 Comparison with Existing Testing
Tools for SSO

To the best of our knowledge, there is no existing work
(except [49]) which performs comprehensive blackbox
fuzzing/ testing on SSO SDKs.
• [18, 33, 51] build tools to check specific, previ-

ously known vulnerabilities (e.g.,CSRF), but could
not discover new ones.
• While our earlier work on model-based security

testing for OAuth2.0 (OAuthTester) [49] has the po-
tential, at least in theory, to discover all the vulnera-
bilities listed in Table 2, our testing shows that OAu-
thTester can only detect two out of the seven types
of vulnerabilities (TLS and state misuse) listed.
This is because some vulnerabilities discovered by
S3KVetter can only be triggered under very specific

conditions. Without the source code, it is very diffi-
cult for blackbox-testers (like [49]) to uncover such
fine-grain, condition-specific problem.

7 Case Study of Vulnerabilities Discovered

7.1 Access token Injection
As the result of SSO, an access token is issued to the RP.
Based on the access token, the RP can identify the user.
The authenticity of the access token is therefore a critical
security requirement. As such, many IdPs (e.g., Face-
book, Sina) have provided an access token-debug API
for RPs to verify the access tokens they received. This
API is heavily used by RPs running the implicit flow [13]
but seldom by those implementing the authorization-
code flow. This is because an access token obtained via
the authorization-code flow is generally believed to be
secure by SDK developers or IdPs. Such belief is based
on the fact that, under the authorization-code flow, the
access token is exchanged over a secure TLS connection
routed directly between the IdP and RP, without passing
through the mobile (client) device which may be con-
trolled/ tampered by the attacker. However, we will show
that an access token obtained using the authorization-
code flow can still be insecure under the presence of
the so-called “access token injection” vulnerability. This
vulnerability is caused by the ill-conceived design of
SSO SDKs. For any RP using a SDK with the “ac-
cess token injection” vulnerability, an attacker can re-
motely inject any access token of her choice to the vul-
nerable RP. As a result, as long as the attacker can obtain
a valid (but different) access token of Alice (e.g., by lur-
ing Alice to login to a malicious RP controlled by the
attacker), the attacker can log into the vulnerable RP as
Alice.

Listing 2: Root Cause of Access Token Injection and
Bypass MAC Key Protection in OAuthLib

1 def _populate_attributes(self, resp):
2 if ’code’ in resp:
3 self.code = resp.get(’code’)
4 if ’access_token’ in resp:
5 self.access_token = resp.get(’

access_token’)
6 if ’mac_key’ in resp:
7 self.mac_key = resp.get(’mac_key’)

7.1.1 Vulnerability Analysis

Below, we use OAuthLib [21], a popular SDK with more
than 6 million downloads, to illustrate this vulnerability.
When the IdP passes the code parameter to the RP in
Step 5 of Fig. 1, this SDK will first verify the correct-
ness of this response. For example, it checks whether it

Victim RP Attacker IdP
1).Req0: authorization_url()

 2). client_id +... + state 3) User authentication and
grant permission

5). Req1:fake_code + state +
victim’s access token at mRP

4) code + state

6). Token exchange request: fake_code + ...
7). Invalid code

8). User profile request: victim’s access token
9). Victim’s user data

Figure 7: Exploit for access token injection

is a secure channel and the state parameter to protect
against CSRF attacks. Thereafter, it calls the function of
populate attributes to populate/ store some commonly

used variables for later use. However, if this function is
not carefully designed, an attacker can control the value
to be stored.

As presented in Listing 2, this SDK stores the value
of code if it exists in the response resp (i.e., Step 5
in Fig 1). Surprisingly, if the response resp contains
access token, its value is also stored. More specifi-
cally, if an attacker feeds the URL input shown in List-
ing 3 to the RP in Step 5, an attacker-controlled access
token is stored by the SDK and used for authentication
later on. In this case, two security properties are vio-
lated. Firstly, Clause 4 is violated since the victim RP
uses the access token issued to mRP. Secondly, Clause 6
is also violated: the IdP believes the current user is the
attacker while the RP thinks she/ he is the victim.

Listing 3: An Exploit URL for Access Token Injection

https://RP.com?state=xxx&code=fake code
&access token=victim access token at mRP

7.1.2 Exploit

The exploit only requires the attacker to obtain Alice’s
access token, e.g., via a malicious RP. As presented in
Fig 7, the attack procedure is as follows:

1-4. The attacker logs into a victim RP using her own
IdP account and her own device.

5. The attacker intercepts and substitutes the normal
response with an invalid code as well as the victim
Alice’s access token of mRP.

6. After verifying the response, the SDK stores the
code and Alice’s access token. The SDK then
makes a token exchange request with this fake code.

7. Since the code is invalid, the IdP returns error.
Therefore, the previously stored access token will
not be overwritten.

8. The RP retrieves the user data using Alice’s access
token.

9. The IdP returns Alice’s user information and thus
the attacker can log into the victim RP as Alice.

7.2 Refresh token Injection
For SSO protocols, an access token often has a short life-
span, just enough to cover the typical duration of a login
session. Thereafter, the RP will need to prompt the user
to perform re-authorization, which can degrade user ex-
perience. To avoid this problem, it is common for an
IdP to issue another long-term “refresh token” to the RP,
together with the initial access token. The RP can sub-
sequently use the refresh token to request a new access
token from the IdP without user intervention. As such,
the mishandling of this refresh token can have severe se-
curity consequences similar to that of the access token.

It is generally believed that the refresh token is secure
since it is delivered over a secure channel (together with
the access token) in Step 7 of Fig. 1. Meanwhile, some
SDK developers have enough security expertise and real-
ize the risk of directly storing the value from the end-user
(e.g., the access token injection vulnerability). There-
fore, these SDK developers attempt to pre-process the
user input and stores it only after it has passed the secu-
rity checkings.

Despite these seemingly strict security checks, we
will show that the so-called refresh token injection vul-
nerability is still possible. This vulnerability enables
an attacker to specify any refresh token of her choice
and then login as the victim. Below, we use the
Request-OAuthLib SDK, which supports auto-token-
refresh mechanism, to illustrate the problem.

7.2.1 Vulnerability Analysis

This vulnerability, though superficially similar to the ac-
cess token injection, is actually more complicated. The
first step is similar: this SDK checks the refresh token
in Step 5 of Fig. 1, and if exists, stores it in the variable
of oauth. client.refresh token. The difference is
that this SDK realizes such a variable is highly security
sensitive and attempts to apply more secure measures to
protect/ verify it (but still fails). Such attempts are pre-
sented in Listing 4 with much simplification for the ease
of presentation.

Specifically, this SDK first checks whether there is a
refresh token either in the arguments provided by the
API caller or in the oauth.token object delivered via
a secure server-to-server communication. Unfortunately,
the former by default is None and the latter can be indi-
rectly manipulated/ controlled by the attacker. For ex-
ample, the attacker can feed an invalid code in Step
5 of Fig. 1 so that the oauth.token object will not
be overwritten by a refresh token exchanged with the
IdP server. In this case, oauth.token will use its de-
fault value None. As such, the attacker can invoke the
prepare refresh body function with an argument of
refresh token= None. The prepare refresh body

Listing 4: Attempts to Filter User Input

1 def refresh_token(self, refresh_token =
None, **kwargs):

2 # self.token is the oauth.token object
3 refresh_token = refresh_token or
4 self.token.get(@’refresh_token’@)
5 ...
6 body = self._client.

prepare_refresh_body(body=body,
refresh_token=refresh_token, scope
=self.scope, **kwargs)

function therefore has no choice but to use the attacker-
controlled variable of oauth. client.refresh token.

7.2.2 Exploit

There exist multiple exploits for this vulnerability. Be-
low, we present one exploit which requires the least ca-
pability of the attacker (Eve): As long as Eve can obtain
Alice’s refresh token associated with a malicious RP (run
by Eve), Eve can login as Alice to any RP which uses the
vulnerable SDK (as shown in Fig. 8):

1-4. The attacker follows the normal protocol flow to log
into the victim RP using her own IdP account with
her own device.

5. When the IdP returns an authorization code, the at-
tacker then injects the victim’s refresh token.

6. Once the access token expires, the SDK will auto-
matically renew the access token using Alice’s re-
fresh token.

7. The IdP then returns Alice’s access token to the RP
according to the refresh token.

When the RP uses this newly obtained access token to
retrieve the user data, the IdP will return the victim’s in-
formation. The damage depends on how the user data is
utilized. In the worst case where the user data is for au-
thentication, the attacker can log into the vulnerable RP
as the victim user.

Note that the above exploit only works for those IdPs
(e.g., Fitbit) which do not require client secret in
Step 6 of Fig. 8. For specification-compatible IdPs re-
quiring this parameter, we need to assume a stronger
threat model: the attacker can obtain the victim’s refresh
token issued for the vulnerable RP.

7.3 Use-before-assignment of state

To thwart CSRF attacks, the OAuth2.0 specification [23]
strongly suggests the use of the state parameter, which
should be generated and handled as a nonce. Note that
the process of the state parameter is tightly related to

Victim RP Attacker IdP
1).Req0: authorization_url()

 2). client_id + scope
 + redirect_uri + state

3) User authentication and
grant permission

5). Req1: attacker’s code +
victim’s refresh_token + state 4) attacker’s code + state

6). Refresh token request: victim’s refresh_token

....
access token expired

7). victim’s access_token

Figure 8: Exploit for refresh token injection

session management, for which the application develop-
ers have multiple options. It is therefore difficult for the
SDK, which is supposed to define the core functionality
only, to consider the different operations among numer-
ous session management tools. This may explain why 9
out of 10 SDKs (see Table 2) are vulnerable to different
existing attacks related to the state parameter: These
SDK developers often rely on the RP developers to im-
plement the state parameter by themselves. Unfortu-
nately, as shown in [49], 55% RP implementations fail to
handle this state parameter correctly.

Towards this end, the Request-OAuthlib SDK pays
considerable attention to carefully implement the state
parameter and has fixed all previously known vulnera-
bilities associated with this parameter. Unfortunately,
the fix itself unexpectedly contains a new bug, making
CSRF attack possible again (but in a different way). By
leveraging the CSRF attack, the attacker can either spoof
the victim’s personal data [43] or control the victim’s RP
account [49].

7.3.1 Vulnerability Analysis

Listing 5 presents the vulnerable code snippet when us-
ing the state parameter. It contains three key func-
tions: init(), callback() and profile(), which correspond
to Req0, Req1 and Req2 in Fig. 1, respectively. When
the user clicks the “login with Facebook” button, the
browser will send Req0 to the RP server and invokes
the “init” function. This function generates an authoriza-
tion URL (Line 5) which includes a random state pa-
rameter to prevent CSRF attacks: Upon receiving Req1,
the “callback” function will be invoked to parse and
verify auth response. In particular, it compares the
state parameter generated in Line 4 and the one in
the auth response in Line 17 (which was stored in the
params variable). In case of mismatch, an error will oc-
cur.

At a first glance, the program appears to be correct.
However, a so-called “use-before-assignment” vulnera-
bility of the state variable exists. Specifically, if an at-
tacker skips Req0 (thus “init” function does not get ex-
ecuted), and instead directly sends Req1 to invoke the

Listing 5: Root Cause of Use-before-Assignment of
State Variable

1 oauth = OAuth2Session(client_id,...)
2 @app.route("/")
3 def init():
4 auth_url, state = oauth.

authorization_url(base_url)
5 return redirect(auth_url)
6 @app.route("/callback", methods=["GET"])
7 def callback():
8 token = oauth.fetch_token(token_url,

secret, auth_response=request.url)
9 session[’oauth_token’] = token

10 return redirect(url_for(’.profile’))
11 @app.route("/profile", methods=["GET"])
12 def profile():
13 return oauth.get(’https://idp/user’)
14

15 def fetch_token(token_url, secret,
auth_response):

16 ...
17 if state and params.get("state", None)

!=state:
18 raise MismatchingStateError()

“callback” function, then the first occurrence of state
in Line 17 becomes the default value, i.e., None. As
a result, the program will not check the second condi-
tion (params.get(“state”,None) ! = state). Instead,
it directly exchanges for an access token (as long as the
other fields in Step 6 of Fig. 1 are valid).

7.3.2 Exploit

This vulnerability allows an attacker to bypass the ver-
ification of the state parameter and thus makes CSRF
attacks possible again. The exploit is presented in [43]
(Section 4.4). Specifically, an attacker performs the fol-
lowing steps:

1. Sign into an RP using her own account from the IdP,
2. Intercept the code on her browser (Step 5 in Fig 1)

and then,
3. Embed the intercepted code in an HTML construct

(e.g., img, iframe) that causes the browser to au-
tomatically send the intercepted code to the RP’s
sign-in endpoint when the exploit page is viewed
by a victim user.

This vulnerability can have high security implication,
ranging from sniffing the victim’s activity at the vulner-
able RP via a “login CSRF” attack [8], to controlling the
victim’s RP account by account hijacking attack [26].
When it is combined with the amplification attack via
Dual-Role IdPs [49], the consequence can be even more
severe. Refer to the above references for details of the

corresponding exploits.

7.4 Bypass MAC key Protection
SSO protocols support two usage types for an access to-
ken: the commonly used bearer token and the yet-to-be-
standardized MAC token. Fig. 1 shows the standard use
of the bearer token: any party in possession of an access
token can retrieve the user data hosted by the IdP. There-
fore, if the access token is disclosed (e.g., via eavesdrop-
ping or insecure storage), an attacker can directly login as
the token owner [13]. To protect the access token against
leakage, more and more IdPs (e.g., Facebook, Sina, etc.)
start to support the MAC token.

The MAC token protocol is supposed to be more se-
cure by signing the original bearer token. Specifically,
in Step 7 of Fig. 1, MAC-token-enabled IdPs will re-
turn a random secret key10 along with the access token to
the RP. When making user-profile requests, the RP needs
to compute a cryptographic hash message (e.g., HMAC-
SHA-256) to prove its possession of the secret key. Only
if both the hash value (MAC) and the access token are
valid would the IdP return the user data to the RP. Un-
fortunately, some SDKs cannot implement this function
correctly. As a result, the purpose of MAC token is to-
tally broken.

7.4.1 Vulnerability Analysis and Exploit

As presented in Listing 2, an attacker can specify any
secret key of her choice using the following input:

1 https://RP.com/callback?state=xxx&code=
fake_code_value&access_token=victim
access_token&mac key=victim mac key

Fig. 9 presents the exploit, which is similar to Fig. 7
with two exceptions: At Step 5, besides an invalid code
and the victim’s access token, the attacker also feeds a
MAC key of mRP. At Step 8, the RP retrieves the user
data using the victim’s access token and the MAC value
computed by the MAC key. Since the access token and
MAC key are paired, the IdP returns the victim’s user
data to the RP for authentication.

8 Lessons Learned

Least privilege. We find that the aforementioned vul-
nerabilities are largely caused by the failure of the SDK
developers in adhering to the principle of least privilege.
Specifically, during each message exchange, the SDK

10Previously, the secret key was the app secret, which is generated
when the RP registers in the IdP platform. But the updated draft has
made it a session secret and will be delivered upon every authorization
request.

Victim RP Attacker IdP
1).Req0: authorization_url()

 2). client_id +... + state 3) User authentication and
grant permission

5). Req1:fake_code + state +
victim’s access token at mRP

+victim’s mac_key at mRP

4) code + state

6). Token exchange request: fake_code + ...
7). Invalid code

8). User profile request: victim’s access token + victim’s MAC
9). Victim’s user data

Figure 9: Exploit for MAC key injection

developer should design a separate function to store the
corresponding variable/ parameter so that the SDK can
easily decide whether a variable/ parameter can be ac-
cessed and/or altered by the user or not. However, many
SDK developers, for simplicity, store all key variables/
parameters using one single function. Furthermore, this
function can be invoked by the user. As a result, even
if the SDK developers attempt to filter out the user-
provided variables, an intelligent attacker can still ma-
nipulate sensitive variables (e.g., access token, refresh
token) that she should not be allowed to.

Less is more. Another observation is that the more
IdPs/ functions a SDK supports, the more suscepti-
ble it would be. The reason is that, since the SSO
specifications only serve as a high-level guideline, IdPs
typically have various application-specific logic flows,
unique APIs and security checks. To support multiple
IdPs, a SDK will need to develop an additional layer
to provide a new, generalized interface to glue vari-
ous IdP-specific implementations together. For ex-
ample, the Request-OAuthLib SDK defines two objects
(i.e., oauth. client and oauth.token) to manage the
OAuth-related variables. When making requests to dif-
ferent IdPs, the SDK can thus retrieve the required vari-
able from these two objects. Unfortunately, this general-
ized interface has enable the most important attack vec-
tor. would like to provide, the more vulnerable it can be.
e.g., OAuthLib, Request-OAuthLib.

9 Related Work

SSO security analysis. Given the critical SSO services,
extensive efforts have been devoted to their security anal-
ysis. Firstly, the protocol specification [23, 39] has been
verified by different formal methods including model
checking [5, 7, 15, 19, 20, 36], manual analyses [28, 32]
and cryptographic proof [11]. These formal methods
have uncovered different protocol design flaws. How-
ever, these methods are mainly used to prove the cor-
rectness (or find violations) of the specification. As a
result, the discovered vulnerabilities may not be realistic
and can be unexploitable (unlike ours). For example, al-

though [19] discovers the so-called 307 Redirect attack
that allows an attacker to learn the victim’s password in
IdP, real-world SSO systems actually use 302 redirection
instead.

Despite these theoretical works, the practical imple-
mentations of the protocols were often found to be in-
correct due to the implicit assumptions enforced by the
IdP SDKs [46] or the incorrect interpretation of ambigu-
ous specification [13]. Towards this end, researchers
start to analyze the security issues of real-world imple-
mentations. The most popular method relies on network
traffic analysis [25, 30, 43–45, 48, 49], to infer a cor-
rect system model for guiding subsequent fuzzing. An-
other attempt was to analyze how the security issues of
the underlying platform can affect the SSO security, as
discussed in [13, 47]. Motivated by numerous types of
vulnerabilities discovered by these methods, researchers
have built different automatic tools [18, 33, 51] to per-
form large-scale testing of SSO implementations against
known classes of vulnerabilities. These studies do not
consider the security of SDK internals and thus are dif-
ferent from ours in nature.

The work most similar to ours should be [46] which
identifies the implicit assumptions in order for an SSO
SDK to be used in a secure way. However, their work re-
quires labor-intensive code translation for each SDK. As
a result, the scheme is not scalable and the resultant se-
mantic model can be inaccurate. More importantly, they
focus on how a SDK can be insecurely used while we
concern the vulnerabilities of SDK internals, which can
be exploited even if the RP developers strictly follow the
Best Current Practices. can be insecure by itself.

SDK security analysis. Modern software is often de-
veloped on the top of SDKs. To detect the SDK us-
age errors, many different tools and methodologies have
been proposed. Most of these works focus on checking
whether the SDK follow a specification, which can be
either manually specified (e.g., SSLint [24]), extracted
from code [5] or learned from other libraries [35, 50].
However, all of them emphasize on the API invocation
patterns. In contrast, relatively few efforts have been de-
voted to the security analysis on the SDK internals.

Asynchronous events studies. Previous research has
shown that asynchronous events can lead to serious prob-
lems. Petrov et al. [37] formulate a happens-before
relation to strictly specify the web event orders (e.g.,
script loading should happen before execution) for de-
tecting dangerous race-conditions in web applications.
Such a happens-before relation was developed based on
in-depth study of relevant specifications (e.g., those of
HTML and Javascript) and browser behavior. As such,
it is rather difficult to generalize their findings to cover
other protocols. Furthermore, the happens-before rela-
tion cannot characterize the much more complicated se-

curity properties of multi-party SSO protocols. Another
related work is CHIRON [27], which can detect semantic
bugs of stateful protocol implementations by considering
different request orders. However, CHIRON mainly fo-
cuses on two-party systems and cannot maintain a con-
sistent system state for more general multiple party sys-
tems. As a result, the work cannot be readily applied to
the 3-party SSO system.

Symbolic execution. Using systematic path ex-
ploration techniques, symbolic execution tools like
KLEE [9], S2E [14], UC-KLEE [38] are very effective
in non-distributed software bug detection, especially for
low-level memory corruption problems [41] (but not for
web apps). More recently, the symbolic execution ap-
proach [10, 31, 40] has been extended to handle asyn-
chronous apps (e.g., OpenFlow and sensor networks)
where events of interest can occur at any time. However,
previous extensions require expert-level domain knowl-
edge and cannot be applied for general asynchronous
apps. Researchers have also used symbolic execution
to verify web applications (e.g., [12, 42]), but they did
not consider challenges arise from multi-lock-step op-
erations or the multi-party coordination. In contrast,
S3KVetter has developed new techniques to test the im-
plementations of multi-party protocols/ systems.

10 Conclusion

In this paper, we have presented S3KVetter, an auto-
mated testing tool which can discover logic bugs/ vul-
nerabilities buried deep in SSO SDKs by utilizing sym-
bolic reasoning techniques. To better explore a 3-party
SSO system, we developed new techniques for symbolic
execution and realized them in S3KVetter. We have eval-
uated S3KVetter on ten popular SSO SDKs/ libraries
which support different SSO protocols and modes of au-
thorization grant flow. In addition to existing vulnera-
bilities, S3KVetter successfully discovers 4 new types of
vulnerabilities, all of which can result in serious conse-
quences including application account hijacking or user
privacy leakage. Our findings demonstrate the efficacy of
S3KVetter in performing systematic reasoning on SDKs
and provide a reality-check on the implementation qual-
ity of popular “industrial-strength” SSO SDKs.

Acknowledgements and Responsible Disclo-
sure

We thank our shepherd Prof. Cristina Nita-Rotaru
and the anonymous reviewers for their valuable com-
ments which help to improve the paper considerably.
This work is supported in part by the Innovation and
Technology Commission of Hong Kong (project no.

ITS/216/15), National Natural Science Foundation of
China (NSFC) under Grant No. 61572415, the CUHK
Technology and Business Development Fund (project
no. TBF18ENG001), and Hong Kong S.A.R. Research
Grants Council (RGC) Early Career Scheme/General Re-
search Fund No. 24207815 and 14217816.

We have reported the newly discovered vulnerabilities
to all the affected vendors and have received various con-
firmations and acknowledgments.

References
[1] Code Coverage. https://coverage.readthedocs.io.

[2] PyPI statistics. http://www.pypi-stats.com/
package/.

[3] Requests-OAuthLib. https://github.com/requests/
requests-oauthlib.

[4] Satisfiability modulo theories competition. http:
//smtcomp.sourceforge.net/2017/.

[5] BAI, G., LEI, J., MENG, G., VENKATRAMAN, S. S., SAXENA,
P., SUN, J., LIU, Y., AND DONG, J. S. AUTHSCAN: automatic
extraction of web authentication protocols from implementations.
In NDSS (2013).

[6] BALL, T., AND DANIEL, J. Deconstructing dynamic symbolic
execution. Dependable Software Systems Engineering 40 (2015),
26.

[7] BANSAL, C., BHARGAVAN, K., AND MAFFEIS, S. Discovering
concrete attacks on website authorization by formal analysis. In
CSF (2012).

[8] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust de-
fenses for cross-site request forgery. In CCS (2008), ACM.

[9] CADAR, C., DUNBAR, D., AND KLEE, D. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proc. Operating System Design and Implementation
(OSDI 08), pp. 209–224.

[10] CANINI, M., VENZANO, D., PERESINI, P., KOSTIC, D., AND
REXFORD, J. A nice way to test openflow applications. In Pro-
ceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2012), no. EPFL-CONF-
170618.

[11] CHARI, S., JUTLA, C. S., AND ROY, A. Universally compos-
able security analysis of OAuth v2.0. Cryptology ePrint Archive,
Report 2011/526, 2011.

[12] CHAUDHURI, A., AND FOSTER, J. S. Symbolic security analy-
sis of ruby-on-rails web applications. In CCS (2010), ACM.

[13] CHEN, E. Y., PEI, Y., CHEN, S., TIAN, Y., KOTCHER, R., AND
TAGUE, P. OAuth demystified for mobile application developers.
In CCS (2014), pp. 892–903.

[14] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E:
A platform for in-vivo multi-path analysis of software systems.
ACM SIGPLAN Notices (2011).

[15] D. FETT, R. KÜSTERS, AND G. SCHMITZ. An expressive
model for the web infrastructure: Definition and application to
the Browser ID SSO system. In IEEE Symp. on Security and
Privacy, S&P (2014).

[16] DITTMER, M. S., AND TRIPUNITARA, M. V. The unix process
identity crisis: A standards-driven approach to setuid. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 1391–1402.

[17] FERRERO, N. OAuth2Lib. https://github.com/
NateFerrero/oauth2lib.

[18] FERRY, E., O’RAW, J., AND CURRAN, K. Security evaluation of
the OAuth 2.0 framework. Inf. & Comput. Security 23, 1 (2015),
73–101.

[19] FETT, D., KÜSTERS, R., AND SCHMITZ, G. A comprehensive
formal security analysis of OAuth 2.0. In CCS (2016).

[20] FETT, D., KÜSTERS, R., AND SCHMITZ, G. The Web SSO
Standard OpenID Connect: In-Depth Formal Security Analysis
and Security Guidelines. In IEEE 30th Computer Security Foun-
dations Symposium (CSF) (2017).

[21] GAZIT, I. OAuthLib. https://github.com/idan/
oauthlib.

[22] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart: directed
automated random testing. In ACM Sigplan Notices (2005),
ACM.

[23] HARDT, D. The OAuth 2.0 authorization framework, 2012. RFC
6749.

[24] HE, B., RASTOGI, V., CAO, Y., CHEN, Y., VENKATAKRISH-
NAN, V., YANG, R., AND ZHANG, Z. Vetting SSL usage in
applications with SSLint. In Security and Privacy (S&P), 2015
IEEE Symposium on (2015), IEEE, pp. 519–534.

[25] HOMAKOV, E. The Achilles Heel of OAuth or Why Facebook
Adds Special Fragment.

[26] HOMAKOV, E. The Most Common OAuth2 Vulnerability.

[27] HOQUE, E., CHOWDHURY, O., CHAU, S. Y., NITAROTARU, C.,
AND LI, N. Analyzing operational behavior of stateful protocol
implementations for detecting semantic bugs. In DSN (2017).

[28] HU, P., YANG, R., LI, Y., AND LAU, W. C. Application im-
personation: problems of OAuth and API design in online social
networks. In Proceedings of the second ACM conference on On-
line social networks (2014), ACM.

[29] JANRAIN. Social login continues strong adoption.

[30] JING, W. Covert Redirect Vulnerability.

[31] KOTHARI, N., MILLSTEIN, T., AND GOVINDAN, R. Deriving
state machines from tinyos programs using symbolic execution.
In Proceedings of the 7th international conference on Information
processing in sensor networks (2008), IEEE Computer Society,
pp. 271–282.

[32] MAINKA, C., MLADENOV, V., AND SCHWENK, J. Do not trust
me: Using malicious IdPs for analyzing and attacking Single
Sign-On. In Security and Privacy (EuroS&P), 2016 IEEE Eu-
ropean Symposium on (2016), IEEE, pp. 321–336.

[33] MAINKA, C., MLADENOV, V., SCHWENK, J., AND WICH, T.
Sok: Single sign-on security–an evaluation of openid connect. In
EuroS&P (2017).

[34] MLADENOV, V., MAINKA, C., KRAUTWALD, J., FELDMANN,
F., AND SCHWENK, J. On the security of modern Single Sign-On
protocols: OpenID Connect 1.0. CoRR (2015).

[35] NGUYEN, H. A., DYER, R., NGUYEN, T. N., AND RAJAN, H.
Mining preconditions of APIs in large-scale code corpus. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (2014), ACM, pp. 166–
177.

[36] PAI, S., SHARMA, Y., KUMAR, S., PAI, R. M., AND SINGH,
S. Formal verification of OAuth 2.0 using Alloy framework.
In Communication Systems and Network Technologies (CSNT)
(2011), IEEE.

[37] PETROV, B., VECHEV, M., SRIDHARAN, M., AND DOLBY, J.
Race detection for web applications. In ACM Sigplan Conference
on Programming Language Design and Implementation (2012),
pp. 251–262.

https://coverage.readthedocs.io
http://www.pypi-stats.com/package/
http://www.pypi-stats.com/package/
https://github.com/requests/requests-oauthlib
https://github.com/requests/requests-oauthlib
http://smtcomp.sourceforge.net/2017/
http://smtcomp.sourceforge.net/2017/
https://github.com/NateFerrero/oauth2lib
https://github.com/NateFerrero/oauth2lib
https://github.com/idan/oauthlib
https://github.com/idan/oauthlib

[38] RAMOS, D. A., AND ENGLER, D. R. Under-constrained sym-
bolic execution: Correctness checking for real code. In USENIX
Security (2015), pp. 49–64.

[39] SAKIMURA, N., BRADLEY, J., JONES, M., DE MEDEIROS, B.,
AND MORTIMORE, C. OpenID Connect core 1.0.

[40] SASNAUSKAS, R., LANDSIEDEL, O., ALIZAI, M. H., WEISE,
C., KOWALEWSKI, S., AND WEHRLE, K. Kleenet: discover-
ing insidious interaction bugs in wireless sensor networks be-
fore deployment. In Proceedings of the 9th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor Networks
(2010), ACM, pp. 186–196.

[41] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A.,
WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL,
C., AND VIGNA, G. Driller: Augmenting fuzzing through se-
lective symbolic execution. In Proceedings of the Network and
Distributed System Security Symposium (2016).

[42] SUN, F., XU, L., AND SU, Z. Detecting logic vulnerabilities in
e-commerce applications. In NDSS (2014).

[43] SUN, S., AND BEZNOSOV, K. The devil is in the (implemen-
tation) details: an empirical analysis of OAuth SSO systems. In
CCS (2012).

[44] WANG, H., ZHANG, Y., LI, J., LIU, H., YANG, W., LI, B.,
AND GU, D. Vulnerability assessment of OAuth implementations
in Android applications. In ACSAC (2015).

[45] WANG, R., CHEN, S., AND WANG, X. Signing me onto your
accounts through Facebook and Google: A traffic-guided security
study of commercially deployed Single-Sign-On web services. In
S&P (2012).

[46] WANG, R., ZHOU, Y., CHEN, S., QADEER, S., EVANS, D.,
AND GUREVICH, Y. Explicating SDKs: Uncovering assump-
tions underlying secure authentication and authorization. In
USENIX Security (2013).

[47] YANG, R., AND LAU, W. C. Breaking and fixing mobile app
authentication with OAuth2.0-based protocols. In ACNS (2017).

[48] YANG, R., LAU, W. C., AND LIU, T. Signing into one billion
mobile app accounts effortlessly with OAuth 2.0. In Black Hat,
Europe (2016).

[49] YANG, R., LI, G., LAU, W. C., ZHANG, K., AND HU, P.
Model-based security testing: An empirical study on OAuth 2.0
implementations. In AsiaCCS (2016).

[50] YUN, I., MIN, C., SI, X., JANG, Y., KIM, T., AND NAIK, M.
APISan: Sanitizing API usages through semantic cross-checking.
In 25th USENIX Security Symposium (USENIX Security 16).

[51] ZHOU, Y., AND EVANS, D. SSOScan: Automated testing of
web applications for Single Sign-On vulnerabilities. In USENIX
Security (2014).

A Detailed Description of the Authoriza-
tion Code Flow of OAuth2.0

The individual steps of authorization code flow, as shown
in Fig. 1, are detailed below:

1. The user initiates the SSO process with the RP by
specifying his intended IdP;

2. The RP redirects the user to the IdP for authentica-
tion. The RP may include the optional state pa-
rameter which is used for binding the request (in
Step 2) to the subsequent response in Step 5;

3. The user operates the client device (e.g., the browser
or the mobile app) to authenticate himself to the IdP.
He also confirms with the IdP to grant the permis-
sions requested by the RP.

4. The IdP returns to the user an authorization code
with the optional state parameter (typically its
value is the hash of cookies and a nonce).

5. The user is redirected to the RP. The RP would
reject the request if the received state parameter
does not match the one, if specified, in Step 2.

6. The RP then requests the access token directly from
the IdP (without going through the user/ client de-
vice) by sending the code parameter and its client
secret.

7. The IdP responds with an access token upon valida-
tion of the identity of the RP and the code parame-
ter submitted by the RP.

8. Using this access token, the RP can request data of
the user from the IdP server.

9. The IdP responds to the RP with the user data (e.g.,
profile) so that the RP can confirm the user’s iden-
tity and allow the user to login to the RP.

10. The user can subsequently request to access his in-
formation/ resource, e.g. the user profile, hosted by
the RP server.

11. The RP server responds to the user with the re-
quested information accordingly.

B Marking Symbolic Variables

Given the marked sample app, S3KVetter must identify
which (ranges of) symbolic input fields (e.g., the entire
request.url or just the code in Listing 6) determine a
path and then extracts all the path constraints related to
these fields. To reduce the overhead for the constraint
solver11, we maintain each input field as an individual
symbolic variable (e.g., code, state) once these fields
are split or decoded. Yet, we still allow byte-level access
to the entire symbolic input (e.g., request.url) in case
we cannot identify input fields correctly.

Listing 6: Example for marking symbolic variables

1 @symbolic(request.url=’http://RP.com/
callback?code=code&state=1234’})

2 def callback():
3 token = oauth.fetch_token(token_url,

secret, auth_response=request.url)
4 ...

11Otherwise, the constraint solver needs to remember all the opera-
tions on the entire symbolic input.

	Introduction
	Background
	Authorization Code Flow of OAuth2.0

	Overview
	Design of S3KVetter
	Symbolic Exploration of SDKs
	Symbolizing Request Orders
	Coordinating among Multiple Parties Silently

	Translating the Predicate Tree
	Reasoning Predicates
	Defining Security Property

	Implementations of S3KVetter
	Evaluation
	Dataset
	Experiment Setup and Performance
	Program Coverage
	Vulnerabilities Discovered
	Detection Accuracy

	Usability
	Comparison with Existing Testing Tools for SSO

	Case Study of Vulnerabilities Discovered
	Access_token Injection
	Vulnerability Analysis
	Exploit

	Refresh_token Injection
	Vulnerability Analysis
	Exploit

	Use-before-assignment of state
	Vulnerability Analysis
	Exploit

	Bypass MAC_key Protection
	Vulnerability Analysis and Exploit

	Lessons Learned
	Related Work
	Conclusion
	Detailed Description of the Authorization Code Flow of OAuth2.0
	Marking Symbolic Variables

