
Reducing Test Cases with Attention Mechanism of Neural Networks

Xing Zhang, Jiongyi Chen∗, Chao Feng, Ruilin Li, Yunfei Su, Bin Zhang, Jing Lei, and Chaojing Tang

National University of Defense Technology

Abstract

As fuzzing techniques become more effective at triggering
program crashes, how to triage crashes with less human efforts
has become increasingly imperative. To this aim, test case
reduction which reduces a crashing input to its minimal form
plays an important role, especially when analyzing programs
with random, complex, or large inputs. However, existing
solutions rely on random algorithms or pre-defined rules,
which are inaccurate and error-prone in many cases because
of the implementation variance in program internals.

In this paper, we present SCREAM, a new approach that
leverages neural networks to reduce test cases. In particular,
by feeding the network with a program’s crashing inputs and
non-crashing inputs, the network learns to approximate the
computation from the program entry point to the crash point
and implicitly denotes the input bytes that are significant
to the crash. With the invisibility of the trained network’s
parameters, we leverage the attention mechanism to explain
the network, namely extracting the significance of each input
byte to the crash. At the end, the significant input bytes are
re-assembled as the failure-inducing input.

The cost of our approach is to design a proper dataset aug-
mentation algorithm and a suitable network structure. To this
end, we develop a unique dataset augmentation technique
that can generate adequate and highly-differentiable samples
and expand the search space of crashing input. Highlights of
our research also include a novel network structure that can
capture dependence of input blocks in long sequences.

We evaluated SCREAM on 41 representative programs.
The results show that SCREAM outperforms state-of-the-art
solutions regarding accuracy and efficiency. Such improve-
ment is made possible by the network’s capability to summa-
rize the significance of input bytes from multiple rounds of
mutation, which tolerates perturbation occurred in random
reduction of single crashing input.

∗Corresponding author

1 Introduction

To discover and eliminate software vulnerabilities, fuzzing
nowadays has been considered one of the most effective ap-
proaches by randomly or strategically generating a large num-
ber of inputs to feed the program, exploring program paths
as many as possible, and hopefully triggering program ex-
ceptions. For the past decade, there has been a series of
research on fuzzing (e.g., [13, 14, 23, 24, 31, 43]), demon-
strating significant effectiveness in triggering crashes. How-
ever, with more crashing inputs produced by fuzzers, the chal-
lenge comes as analysts often need to spend plenty of time to
trace the crashing inputs step-by-step and inspect the program
logic, in order to understand the root cause of the discovered
crashes [22, 39, 51]. Even worse, fuzzers tend to generate
inputs in their most ill-formed and peculiar shape, in an at-
tempt to cover corner paths and trigger unexpected crashes.
Such inputs often add heavy burden on subsequent debugging
procedures, by misleading analysts to dive into unnecessary
program logic that is not related to the crash. In fact, only a
small portion of the crashing inputs are necessary to reproduce
the failure.

Challenges in test case reduction. Test case reduction [25,
33, 36] which aims to minimize crashing inputs by remov-
ing irrelevant portion and preserving failure-inducing portion,
plays an important role in facilitating debugging tasks like
crash analyses [9,12,19,38]. Prior efforts to reduce test cases,
on one hand, rely on random reduction. A prominent exam-
ple is delta debugging [8, 50], which adopts various search
strategies (e.g., binary search) to randomly reduce inputs by
gradually increasing the granularity of reduction and con-
firming whether the crash can be reproduced. However, such
an approach only achieves local minimum of reduction and
cannot reduce discontinuous input blocks that correlate with
each other [2]. For instance, when there are interdependent
input blocks that typically appear in file-based crashing inputs,
those related blocks should either be preserved or reduced at
the same time. This is a difficult task for random reduction-
based approaches as they lack deep understanding of pro-

gram logic. On the other hand, rule-based approaches, such
as information flow tracking [16, 21, 30] and input structure-
aware reduction [33], require analysts to manually specify
rules about program semantics. For instance, information flow
tracking-based approaches (e.g., taint analysis) attempt to re-
cover accurate information flows between inputs bytes and
the crash, to precisely determine a subset of input that actually
affects the crash. This process could be inaccurate and error-
prone, because the recovery of information flow is built upon
the comprehensive understanding of a crash, which involves
expert knowledge.
Our approach. At the core, test case reduction is to deter-
mine a subset of input that actually contributes to a crash. In
our research, we treat test case reduction as a deep learning
task and leverage neural networks to denote “essential” input
bytes as significant to a crash and denote “accidental” input
bytes as insignificant. Particularly, by feeding the network
with crashing inputs and non-crashing inputs, the network
learns to approximate the computation from the program en-
try point to the crash point. However, as the trained network’s
parameters are not understandable, such valuable description
of contribution is hidden in the network. To explain the trained
network, we utilize the interpretability of neural networks (by
adopting the attention mechanism) to extract the input weights
that denote the contribution to the crash. In the end, we re-
assemble significant input bytes as the failure-inducing input
according to the calculated contribution.

A proper dataset and a suitable network structure are vital to
the success of deep learning tasks. This is also the cost of our
approach that does not rely on digging into program internals.
Our research conquers several challenges in the adoption of
deep learning-based reduction. On one hand, since there is no
dataset that can be directly used for our purpose, we develop
an online dataset augmentation algorithm to mutate a sin-
gle crashing input and output adequate positive and negative
samples during the training process. This algorithm works in
conjunction with the neural network and helps the network to
gradually achieve a fitting state: when each round of network
training is completed, the significance of input byte calculated
by the trained network is used to confine the focus of mutation
on crashing inputs in the next round of sample generation.
In this way, it is more likely to produce a different crashing
input as the seed to breed variant samples and thus expand the
sample space of crashing input. Consequently, the neural net-
work can draw a more accurate boundary between crashing
inputs and non-crashing inputs. On the other hand, existing
network architectures only deal with short sequences such as
sentences of natural language. Handling program inputs with
tens of thousands of bytes presents a new challenge. As such,
we design a new network architecture that is able to capture
and preserve interdependence of input blocks in long input
sequences, by combining convolutional layers and recurrent
layers in an innovative way.

We implemented the prototype of SCREAM (teSt Case

REduction with Attention Mechanism) and evaluated it on
41 representative programs including 29 CGC programs and
12 real-world programs. The evaluation demonstrates that
SCREAM is highly effective and accurate in test case reduc-
tion. It achieves an average reduction rate of 75.4% which
takes 29.8 minutes on average. More importantly, SCREAM
has no false positives and less false negatives when compared
with the state-of-the-art solutions—afl-tmin [1], Picireny [4],
and Penumbra [21]. With the help of SCREAM, 70.7% of the
reduced inputs have reached ground truth. This is attributed
to SCREAM’s capability to solve control flow complexity
to some extent by continuously mutating a subset of inputs
guided by the calculated significance. Furthermore, compared
with AFL’s mutation engine, our dataset augmentation al-
gorithm facilitates SCREAM to achieve higher reduction
efficiency even when SCREAM is fed with less samples. The
amount of samples generated by SCREAM’s algorithm is
only 38.0% of that generated by AFL’s algorithm. Regard-
ing interpretability methods, the attention mechanism that
we adopted outperforms partial derivatives in reduction effi-
ciency.
Contributions. The contributions of this paper are summa-
rized as follows.

• New insights. We leverage the neural network to address
the problem of test case reduction. Our intuition is to
train the network to approximate the computation from
the program entry point to the crash point and leverage
the interpretability to denote failure-inducing input bytes
that are significant to the crash.

• New techniques. We present several new techniques to
address the challenges in designing the neural network-
based solution. In particular, we design a new dataset
augmentation algorithm that works in conjunction with
the neural network and generates adequate and high-
differentiable samples to expand the space of crashing
input. Besides, we also present a new architecture of
neural network that can process sequence information
for long inputs.

• Evaluation. We evaluated SCREAM1 on 41 programs,
including 29 CGC programs and 12 real-world programs.
The overall results show that SCREAM is more efficient
and accurate than the state-of-the-art solutions.

2 Attention Mechanism for Interpretability

The attention mechanism was originally proposed to improve
the fitting of neural networks by assigning different weights
to the input sequence and minimizing the loss function [17].
Recent years a line of research [10,27,32,48] leveraged the at-
tention mechanism for the interpretability of neural networks,
allowing us to directly inspect the internal working of neural
networks. The hypothesis is that the magnitude of attention

1SCREAM is available at https://github.com/zxhree/SCREAM

https://github.com/zxhree/SCREAM

weights highly correlates with how relevant a specific region
of input is, for the prediction of output at each position in a
sequence. This can be easily accomplished by visualizing the
attention weights for a set of input and output pairs. In this
paper, we borrow this idea and leverage the attention mecha-
nism to visualize the contribution of each input region to the
output.

As discussed, the idea of attention mechanism is straight-
forward. For an input vector (~x1,~x2, ...,~xn), suppose we have:

~v = α1~x1 +α2~x2 + ...+αn~xn

and y = f (~v),where ∑
i

αi = 1,αi > 0. (1)

To function y = f (~x), αi can be regarded as the contribution
that input byte xi makes to y, where (α1,α2, ...,αn) is also
known as a weighted vector. Such a function y = f (~x) is often
utilized to determine the influence of input bytes to the output
in seq2seq networks. The transition equation is as follows:

~α = g(~x;~θ),~v = α1~x1 +α2~x2 + ...+αn~xn,

y = f (~v;~θ),where∑
i

αi = 1,αi > 0 (2)

~θ is the parameter to be determined in the training process.
Function g(~x;~θ) is used to calculate the weight vector, which
is also known as similarity function. In the dataset,~xi is the
ith sample and~yi is the corresponding label. The loss function
with mean square error is:

L(f (~x,~θ)) = ∑
i
| f (g(~xi;~θ)�~xi;~θ)− yi|2,s.t.∑g(~xi;θ) = 1

(3)
However, when using the gradient descent method to mini-

mize loss L(f (~x,~θ)), it is difficult to satisfy the constraint
∑g(~xi;θ) = 1 and get ~θ. Therefore, so f tmax function is
adopted as the activation function of g(~x,~θ) in the design
of networks, given that the sum of so f tmax function’s output
equals to 1. The transition equation with so f tmax becomes:

~α = so f tmax(g(~x;~θ)),

~v = α1~x1 +α2~x2 + ...+αn~xn,y = f (~v;~θ),

so f tmax(xi) =
exi

∑ j ex j

(4)

And the loss function becomes:

L(~θ) = ∑
i
| f (so f tmax(g(~xi;~θ))�~xi;~θ))− yi|2 (5)

The network that we designed (as described in Section 4.3)
follows the above transition equation. In fact, Equation (4)
is the core architecture of the attention mechanism and such
an architecture can be used to determine the relevance of
the input bytes and the output. In particular, under this ar-
chitecture, we are able to get the~θ by minimizing L(f (~x,~θ))

with the gradient descent. Function g(~x;~θ) or f (~x;~θ) could be
convolutional neural networks (CNN), recurrent neural net-
works (RNN) or fully connected networks. While in seq2seq
networks, g(~x;~θ) is LSTM and f (~x;~θ) is a fully connected
network.

3 Test Case Reduction

Given a program P and a crashing input~x = (x1,x2, ..,xn) that
causes crash C, the goal of test case reduction is to find a
minimal subset of the crashing input~x = (xi, ..,x j),(1≤ i≤
j≤ n) that triggers the same crash C of program P. The output
of test case reduction is also known as the failure-inducing
input.

3.1 Motivating Example
To better understand the problem of test case reduction, we use
an example to illustrate and compare existing solutions and
our solution. Listing 1 shows a code snippet that we captured
and simplified from a real-world program that digests file-
based inputs. Assume that the fuzzer produces the following
test case: “I1S[AAAAI2A]y2SS1SI3” (in this example, the
minimal form of crashing input is “I1I2I3”). As the code
does not check the size of idArray, this input causes out-of-
bounds access on the third integer assignment to idArray at
line 22 (the array can at most hold two integers).

1 char* input = scanf();
2 int ptr, iPtr = 0;
3 char* Str_Storage = "";
4 int idArray[2];
5 while(true){
6 if(input[ptr++] == ’S’){
7 if(input[ptr++] == ’[’){
8 while(true){
9 if(input[ptr++] == ’I’)

10 if((byte)input[ptr] < 10)
11 idArray[iPtr++]=(byte)input[ptr];
12 ptr++;
13 else if(input[ptr++]==’]’)
14 break;
15 else{Str_Storage += input[ptr++];}
16 }
17 }else{
18 Str_Storage += input[ptr+3];
19 ptr = ptr+3;}
20 }else if(input[ptr++] == ’I’){
21 if((byte)input[ptr] < 10)
22 idArray[iPtr++] = (byte)input[ptr];
23 ptr++;
24 }else if(input[ptr++]==’[’|input[ptr++]==’]’)
25 Syntax_Error_Exit();
26 }

Listing 1: Example code

Existing techniques. Random reduction does not analyze
program internals logic at all. Delta debugging, for example,
adopts binary search and increases granularity to determine

Table 1: Example Dataset

Positive Samples Negative Samples
I1S[AAAAI2A]y2SS14I9 I1S[AAAAIIWD2SS1SIW
I0S[ZD$EI2!]I2SCEDI5 IWQeAAAAI2A]EDSS1SI3
I7S[WS∗dI23]I5Sy3uI8 IFS8yS∗dI23]I5SyPoie
I5S[WSidI23]I0Wy3uI6 iueS[WSidwe jI0Wy3uIN
I6DDeikDP f eI5OM82LI7 IXDDeipqioI5OM82e f s
I4TypwqCv34I2OE pvBI8 eoibpwqCv34 f eOE pvBdw
... ...
I9lqdvbmn13I1hzxw8I7 we4qdvbmn13zhhzxw8ep

I
.25

1
.05

S
.021

[
.02

A
.003

A
.003

A
.003

A
.003

I
.25

2
.05

A
.003

]
.02

y
.003

2
.003

S
.006

S
.005

1
.003

S
.005

I
.25

3
.05

Figure 1: Example weights of trained network

failure-inducing input sets. However, a fundamental drawback
is that it does not consider interdependence among discontin-
uous input blocks and therefore only achieves local minimal
reduction. When discontinuous input blocks correlate with
each other, they should be considered as a whole in test case
reduction. In the example, reducing “S[” or “]” separately
does not lead to the crash. The code checks the paired key-
words “[” and “]”, indicating that “S[” and “]” must be
reduced together.

On the other hand, for rule-based approaches, the program
execution from the entry point to the crash is described by
a set of logical expressions. The program’s execution is ana-
lyzed with operational semantics at the instruction-level. For
instance, one can use backward dynamic taint analysis to de-
termine the information flow between the input bytes and
the crash, by marking crash points as taint sources and mark-
ing input bytes as taint sinks. However, a drawback of this
approach is that it is often difficult to precisely define taint
sources and taint policy when analyzing the root cause [21],
which leads to imprecision in information flow tracking. For
example, as can be seen in Listing 1, when defining the out-
of-bounds byte of idArray as the taint source and defining the
input as the taint sink, conservative taint policy would cause
undertainting and produce “I3” as the result. Nevertheless,
when trying to include “I1I2” in the output, non-conservative
taint policy would lead to overtainting and produce “S[]” as
a side effect. Reducing inputs in both ways does not trigger
any crashes. Therefore, taint-analysis-based approaches are
less effective in test case reduction.

3.2 Our Insight

In this paper, we aim to address the challenge from a new an-
gle: conceptually, test case reduction is to determine a subset
of the input that contributes to the crash. Therefore, we utilize
the neural network to approximate the computation from the
program entry point to the crash point. Approximating such

Table 2: Reduction Process (with Binary Search)

Input Bytes with Weight Crash?
I1S[I2]I3 (0.25|0.05|0.021|0.02|0.25|0.05|0.02|0.25|0.05) X
I1I2I3 (0.25|0.05|0.25|0.05|0.25|0.05) X
III (0.25|0.25|0.25) ×

computation is a numerical optimization problem (involves
arithmetic expressions rather than logical expressions) that
is achieved by minimizing errors described by mathematical
loss functions. Instead of directly determining the “essential”
bytes in the crashing input, the purpose of fitting/approxima-
tion is to let the network differentiate crashing inputs with
non-crashing inputs and activate the input nodes that con-
tribute more to the crash. When the network is trained, we
utilize the attention mechanism to extract the “essential” in-
put bytes through its explanation on the trained network’s
internal.

More specifically, our neural network is trained in a super-
vised manner. The input of the network is the program input,
and the output is the labeled data about whether the crash
has been triggered. To feed the network, we design a novel
dataset augmentation algorithm which works in conjunction
with the network training and helps the network to achieve
a fitting state: by mutating a single crashing input, the algo-
rithm outputs a large set of samples in each round of mutation
and training (the left column in Table 1 lists positive samples
that can trigger the crash. The right column shows negative
samples that do not trigger any crashes). After each round
of network training, we leverage the attention mechanism to
calculate the importance to the output for each input byte.
The calculated significance score is then used to guide the
mutation in the next round. During the training and mutation
process, the weights of input bytes that contribute more to the
crash increase, while the weights of less-contributed bytes are
lowered. After a period, the weights become stable (Figure 1
shows an example weights of the trained network). In the end,
we determine the reduced input by re-assembling the bytes
according to their final weights. Table 2 illustrates the idea of
how the reduced input is re-assembled.

The neural network plays an irreplaceable role in reduction:
on one hand, it offers a way of guiding the mutation through
weight adjustment. Without such guidance, the search space
of reduction will largely expand and it is less likely to find
a reduction strategy that captures the dependence among in-
put blocks in the long input; On the other hand, the neural
network accumulates knowledge about “crash contribution”
by adjusting and summarizing the significance of input bytes
from multiples rounds of training and mutation, which even-
tually instructs the one-shot reduction when the network is
trained (details are described in Section 4.5).
Technical challenges. Nevertheless, our insights come with
several challenges that should be addressed:

• The first problem is how to generate datasets that are suit-

Crashing Input

Produce Pos. and Neg. Samples to
Train the Network

Mutation

Seed
SelectionSeed

 Compute Relevance
Score of Seed

Reducing
Reduced Failure-

inducing Input

Subset of
Positive Samples

Relevance Scores

Positive Samples

Neural Network

Online Dataset Augmentation and Neural Network Training

Figure 2: Overview of SCREAM

able for training. Fuzzers often produce a small amount
of crashing inputs. The amount is inadequate for the net-
work training. Therefore, we need to generate training
samples by mutating existing crashing inputs. However,
existing neural-network-based mutation for dataset aug-
mentation is mainly designed for images. The mutation
includes rotation, flipping, etc., which is not suitable for
program inputs. The other line of mutation is for fuzzing
(e.g., AFL’s mutation), with the aim of discovering one
path that extends current code coverage. In the consec-
utive rounds, such mutation changes a small portion of
input that is “interesting”, and the mutated input may
potentially explore one more path. As a result, this kind
of mutation produces test cases that are close to each
other in the input space. Those clustered samples are
not suitable for training the network, as it would cause
overfitting. Therefore, to achieve a satisfying fitting state
for the network, it is desirable to construct/augment the
dataset with highly-differentiable samples that can ex-
pand the sample space.

• The second challenge is that existing RNN architectures
that can process sequence information do not directly
suit our task. On one hand, RNNs are mainly applied
to natural language processing, which deals with short
input sequences like sentences of natural language (the
length is usually less than 150). However, for test case
reduction, the input length often ranges from hundreds of
bytes to tens of thousands of bytes. The long input tends
to introduce vanishing gradient problems for RNNs and
thus lead to underfitting. On the other hand, applying
the attention mechanism would eliminate sequence in-
formation of input due to the sum operation in Eq (4)
in Section 2, which would eventually affect the calcula-
tion of the input weight~α. Therefore, we need to design
a new RNN-based architecture that can capture depen-
dence of input blocks in long input sequences and make
the attention mechanism applicable.

Solutions. To address the above problems, we propose two
novel techniques in this paper:

• We design an online dataset augmentation technique

that can automatically construct the dataset with a single
crashing input. The dataset is generated by mutating a
given crashing input, and the generation process works
collaboratively with the network training process. Ini-
tially the network takes a single crashing input and pro-
duces the relevance score that can guide the mutation.
To select a seed for the next round of mutation, we use
the bi-gram model to measure the similarity between
input vectors and select the most dissimilar one from the
current corpus as the seed. In doing so, the algorithm can
generate highly-differentiable samples in input space to
train the neural network.

• We design a new RNN-based network architecture to
handle dependence of input blocks in long sequences.
First, we utilize CNN to encode the one-dimensional
long sequence to multi-dimensional feature vectors.
Then we send the feature vectors to the RNN with the at-
tention mechanism. As the input vector is compressed by
CNN, back-propagation would make weight assignment
less accurate. Therefore, we train multiple networks with
different parameters at a time to reduce deviation and
errors.

4 System Design

Figure 2 presents a high-level overview of our system. The
core of SCREAM is a feedback system that plays the role of
dataset augmentation and neural network training. First, the
neural network is fed with a set of crashing inputs that are
produced by the mutation component. The network outputs a
relevance score that indicates the importance of input bytes.
Then the relevance score is used to guide sample generation in
the next round of mutation. As the mutation process is based
on genetic algorithms, a seed is sent to the neural network to
produce such a relevance score. In the meantime, the mutation
component generates samples to enrich the dataset for training
neural networks. Note that this iterative process will not affect
the generalization of the network, since the generalization
mainly depends on the quality of dataset, which is guaranteed

by our dataset augmentation algorithm. When the network
is well trained, the one-shot reduction is applied to the input
according to the computed relevance score. We determine
that the network is well-trained or stable when one of the
following two requirements are met:

• The failure-inducing inputs keep unchanged in several
consecutive rounds of iteration, indicating that the reduc-
tion does not make new progress at this stage.

• Referring to Section 4.2, the mutation algorithm gener-
ates either all positive samples or all negative samples.
It means that the network becomes stable and is able
to differentiate significant input fields and insignificant
fields for the fed inputs.

4.1 Input and Output Embedding
One-hot vector is a popular approach of input embedding that
has been widely used in many applications [3, 15]. However,
it does not suit our case, as the input for the program to digest
is often large, causing much computational inefficiency. On
the contrary, we use real-valued vectors to encode the input so
that it can be easily accepted by the network. In other words,
any types of inputs (e.g., file-based inputs, string-based inputs)
are directly converted into hexadecimal byte sequences.

The output of neural network is a boolean variable that
represents whether a crash is triggered by the program input
(i.e., labeling samples by executing the program with the given
program inputs). The crashing input is marked with a positive
label in the output. Moreover, we uniquely represent a crash
using a short sequence of executed function calls starting
backward from the crash point of the program. Note that such
crash representation for data labeling does not need to be
100% accurate. Thanks to the tolerance of neural network-
based approaches, as long as most of the samples are correct
labeled in the training dataset, the neural network can still
achieve a good fitting state.

4.2 Dataset Augmentation
A comprehensive dataset is critical to the training of neural
networks. Given that positive samples are usually inadequate
for a training dataset, we mutate crashing inputs rather than
random inputs. In this way, there is a higher chance to pro-
duce positive samples. On the other hand, as illustrated in
Figure 3, feeding the network with positive samples that are
largely different from each other is desirable to the fitting of
the network. However, existing fitness functions of mutation
algorithms are mostly designed for exploring new program
paths [41]. Those algorithms tend to choose new seed inputs
that will potentially explore new paths in the next round. How-
ever, this would only mutate the “interesting” fields and cover
a small portion of the input. As a consequence, the mutation
algorithms would produce program inputs with high similar-
ity in most input fields, leading to overfitting for the trained

Input Space

Positive Samples Generated in the 1st Round
Negative Samples

Positive Samples Generated in the 2nd Round
Positive Samples Generated in the 3rd Round
Positive Samples Generated in the 4th Round

Seed1

Seed2

Seed3
Seed5 Decision

Boundary
Seed4

Seed1

Seed2

Seed3

Seed4

Decision
Boundary

Seed5

Input Space

Positive Samples Generated in the 1st Round
Negative Samples

Positive Samples Generated in the 2nd Round
Positive Samples Generated in the 3rd Round
Positive Samples Generated in the 4th Round

Figure 3: The distribution of the dataset generated by: existing
approaches (on the top) and our approach (on the bottom).
The samples generated by our approach are more scattered.
Thus, the trained network is less likely to overfit

network.
To tackle the challenge described above, we design a

novel algorithm that generates training datasets with highly-
differentiable samples. On the whole, the algorithm (as shown
in Algorithm 1) is based on genetic algorithms and works in
conjunction with the neural network. It consists of two parts:
(1) mutation (i.e., which input fields to mutate and how to
mutate those fields); (2) seed selection (i.e., how to select the
seed for the next round). Below we give a detailed description
of the algorithm.
Mutation. For each round of mutation, initially the neural
network takes a crashing input~x = (x1,x2, ...,xn) and outputs
a vector of relevance scores —~r = (r1,r2, ...,rn)—that marks
the importance of each input byte to the crash. Then, we select
a set of input bytes whose relevance scores fall into the middle
range 2. Random mutation (setting byte value from 0x00 to
0xFF) is applied on those bytes, generating a set of mutated
inputs s = {~xa,~xb, ...} that include positive candidates (i.e.,

2As we tested, with the relevance scores falling into a middle range
(e.g., from [15%, 90%] to [30%, 50%]), the results are close and satisfying.
Besides, determining an optimal range for one case does not give optimal
result on another case. Here we empirically choose [20%, 60%], as shown in
Algorithm 1.

Algorithm 1 Algorithm to generate training datasets
Require: seed ← crashing input

R_score← relevance score of crashing input
1: minT hd← Sort(R_score)[len(seed)∗20%]
2: maxT hd← Sort(R_score)[len(seed)∗60%]
3: for i ∈ range(len(input)) do
4: if R_score[i] ∈ [minT hd,maxT hd] then
5: mutate_indices.append(i)
6: end if
7: end for
8: Random_Mutate_Base_On_List(mutate_indices)
9: Execute_And_Label_Inputs()

10: Gen_Corpus(Positive_Candidates)
11: BigramScores← Get_BiGram_Scores(Positive_Candidates)
12: NextRoundSeed←Corpus[min(BigramScores)]

inputs that trigger the crash) and negative candidates (i.e.,
inputs that do not trigger the crash).

Note that we choose to mutate the input bytes with middle
relevance scores. This keeps important input fields unchanged
and corrects errors, which assists the network to achieve a
fitting state and helps produce meaningful samples:

• Important fields that have high relevance scores remain
unchanged to some extent, as those fields are supposed
to be kept; insignificant fields that have low scores, on
the other hand, will be reduced in subsequent steps (de-
scribed in Section 4.5).

• If the network assigns a high score to an insignificant
field, the score will be lowered by the network in the
next round (because the network has determined output
that can give feedback), leading to mutation on the field.
Similarly, if the network assigns a low score to an impor-
tant field, the score will rise in the next round. Therefore,
this important field will remain unchanged in the next
round (when its relevance score exceeds maxT hd in Al-
gorithm 1).

Seed selection. In this step, the goal is to select a seed for the
next round. The seed is supposed to be the most different one
among positive candidates. However, existing approaches of
similarity measurement, such as cosine similarity, cannot be
directly applied to byte sequences because our encoding is
simply a representation that contains no semantics to facilitate
similarity measurement. To this end, we borrow the idea from
NLP and use the Bi-gram model to measure the difference
between input byte sequences.

The Bi-gram model is based on Markov theory and can
be utilized to convert a byte sequence into a numeric value
using the occurrence probability. Given a program input
~x = (x1,x2, ...,xn), the occurrence of~x is denoted as p(~x) =
p(x1,x2, ..,xn) = p(x1)p(x2|x1)... p(xn|xn−1,xn−2,x1). To
identify the most different one in the corpus, we only need
to determine the sample that has the lowest p(~x). Given
that the occurrence of xi is only related to its preceding
byte xi−1 in the Bi-gram model, the occurrence of ~x is
p(~x)≈ p(x1)p(x2|x1)...p(xn|xn−1). Based on the Bayes rule,

the posterior probability p(xi|xi−1) equals to p(xi,xi−1)
p(xi−1)

, where

p(xi|xi−1) can be calculated by C(xi,xi−1)
C(xi−1)

and C(x) function is
the count of x in the corpus. Since the product would make
p(~x) extremely small, we use log function to calculate p(~x),
which is:

log(p(~x)) = log(
C(x1)

∑
n
i=1 C(xi)

)︸ ︷︷ ︸
log(p(x1))

+ log(
C(x2,x1)

C(x1)
)︸ ︷︷ ︸

log(p(x2|x1))

+...

+ log(
C(xn,xn−1)

C(xn−1)
)︸ ︷︷ ︸

log(p(xn|xn−1))

(6)

The result log(p(~x)) is the Bi-gram score of ~x, which is
used to measure the difference among positive candidates. In
the end, we use the up-sampling [5] to balance the negative
samples and positive samples.

4.3 Network Structure
As described in Section 3.2, the network should be able to
process long input without the loss of sequence information.
The architecture of our network is shown in Figure 4. In
particular, on one hand, we adopt the convolutional network
before the LST M network to encode the one-dimensional long
input into high-dimensional short vectors, for the purpose of
processing long inputs. Apart from that, the vector that is
sent to the so f tmax function should preserve the sequence
information of the input that is compressed by convolutional
layers. For this purpose, we utilize the LST M network as the
similarity function.

In the beginning, the input is passed through multiple one-
dimensional convolutional layers (Conv1D). The Conv1D
works as an encoder, with each Conv1D layer encoding the ad-
jacent elements of layer input into a high-dimensional vector.
The jth output of ith layer~oi

j is denoted as follows:

~oi
j = f i

Conv1D(~x
i
(stridei−1)∗ j,~x

i
(stridei−1)∗ j+1, ...

...,~xi
(stridei−1)∗ j+kerneli)

(7)

where stridei is the stride parameter of the ith layer, kerneli

is the kernel parameter,~xi is the output of the (i−1)th layer,
and~x0 is the input of the network. Besides, the length of ith
layer’s output is denoted as ni = d ni−1−kerneli+1

stridei e.
Assume that the input is~x = (x1,x2, ...,xn) where~x ∈Rn×1.

After passing through m Conv1D layers, the output vector
becomes ~om = (~om

1 ,~o
m
2 , ...,~o

m
nm), where ~om ∈ Rnm× f ilterm

and
f ilterm is the filter parameter of the mth layer. In this case,
~om can be regarded as the encoded vector of ~x with higher
dimension and shorter length.

Then, the~om is passed through the LST M layer, and the jth
output ~oLST M

j is oLST M
j = fLST M(~om

j ,o
LST M
j−1). This indicates

CONV1DCONV1D

CONV1D

Input

...
CONV1D CONV1DCONV1D

CONV1D CONV1D

...

...

Feature
Vector

...

LSTM LSTM LSTM

Softmax

α1 αmα2
Relevance
Score ...

Output

...Weighted
Vector

Figure 4: The network architecture

that ~oLST M
j vector contains sequence information of the cur-

rent input node and all its previous input nodes. Therefore,
the output vector~oLST M = (oLST M

1 ,oLST M
2 , ...,oLST M

nm) (where
~oLST M ∈ Rn×1) also preserves such sequence information.

In the end, after passing through the so f tmax function,
the vector of relevance score becomes ~α = (α1,α2, ..,αnm).
For each input byte, we multiply the feature vector ~om by
the vector of relevance score ~α. After that, we add all the
products together and get the eigenvector ~v = ∑

nm

i=0~o
m
i ∗αi.

The~v is then passed through fully-connected layers.

4.4 Relevance Computation
As the convolutional network compresses the long input se-
quence, the generated relevance score vector~α is much shorter
than the original long input. As a consequence, it is impre-
cise to represent the significance of input byte with~α. Thus,
we design weight backward allocation and accumulation of
multiple networks to reduce imprecision.
Backward weight allocation. As indicated in Equation (7),
the Conv1D layer’s output~oi

j is determined by several nodes
of~xi−1. As an example, in Figure 5, the output of the 5th layer
~o1 is determined by the input (x1,x2,x3,x4,x5,x6,x7,x8). For
a typical Conv1D network, the kernel parameter is usually
larger than stride parameter, meaning that an input node con-
tributes to multiple output nodes. In other words, the input
nodes that contribute to a certain output node have variant
weights. Based on this fact, we design the backward weight
allocation algorithm shown in Algorithm 2. More specifically,
we assume that initially every input node has the same contri-
bution to each of its affected output nodes. Then the weights

x1

x2

x3

x4

x5

x6

.

.

.

.

.

.
.
.
.

.

.

.

o1

.

.

.

kernel=3
stride=1

kernel=2
stride=1

kernel=3
stride=2

kernel=2
stride=1

Figure 5: Illustration of Conv1D’s input and output. ~o1 is
influenced by (x1,x2,x3,x4,x5,x6,x7,x8) by Equation (7)

are recursively propagated from the last layer to previous lay-
ers. For instance, as shown in Figure 5, if the weight of~o1 is
set to 1.0, after backward propagation, the weights of input
nodes are: W~o1

1 = 0.028,W~o1
2 = 0.083,W~o1

3 = 0.167,W~o1
4 =

0.222,W~o1
5 = 0.222,W~o1

6 = 0.167,W~o1
7 = 0.083,W~o1

8 =

0.028, where W
~o j
i is the weight of input node xi assigned

by output node~o j.

Algorithm 2 Backward weight allocation algorithm
Require: indices← Input nodes share the same weight

m← The layer of indices
αm ← The allocated weight on the mth layer of indices
K ← Kernel parameter for each layer
S← Stride parameter for each layer
Windex ← The allocated weight from output to xindex
Function getWeight

1: if m == 1 then
2: for index ∈ indices do
3: Windex←Windex +αm

4: end for
5: else
6: for index ∈ indices do
7: newIndices← []
8: for i ∈ [1,K[m−1]] do
9: newIndex← S[m−1]∗ (index−1)+ i

10: nI.append(newIndex)
11: end for
12: αm−1← αm/len(nI)
13: getWeight(nI,αm−1,m−1,K,S,Windices)
14: end for
15: end if

Accumulation of multiple networks. As Figure 4 shows,
we assume that the input (x1,x2, ...,xn) is sent to an m-layer
network and the relevance score of ~om

j is ~α. As such, the

relevance score of an input node xi is ri = ∑ j W
~om

j
i . Since

~r comes from ~α, whose length is shorter than ~x, it is less
accurate to indicate the importance of input node using
~r. To this end, we take the average of multiple networks
with different initial parameters to reduce errors. In par-
ticular, for a network p, we denote the input ~x’s relevance

score as~rp = (rp
1 ,r

p
2 , ...,r

p
n). Then we normalize~rp and get

~Rp = (Rp
1 ,R

p
2 , ...,R

p
n), where Rp

i = rp
i /max(~rp). In the end, we

accumulate multiple networks to calculate the final relevance
score ~R = (R1,R2, ...,Rn).

4.5 Reduction

For a crashing input, its relevance score represents the contri-
bution of each input byte to the crash. As such, the input bytes
with higher relevance score should be preserved. However,
the relevance score ~R of one single input is not representative
because there are errors existed in the fitting of network and
the weight computation, leading to inaccuracy. Therefore, we
empirically select the top two percent of positive samples that
are most different in the corpus (choosing the samples with
the lowest Bi-gram scores) as the candidate set. Given that
those samples are more likely to cover less explored paths
in the program, there is a higher chance to reduce the mu-
tated fields in the samples while triggering the crash. For each
crashing input in the candidate set, we rank the input bytes
according to the relevance score ~R and reduce them from high
scores to lower scores. As described in Algorithm 3, binary
search is used in our reduction. In addition, we execute the
program to verify whether the reduced input indeed triggers
the crash after reduction.

Algorithm 3 Reducing algorithm
Require: crash_input ← Crashing input to be reduced

R← relevance score
1: sortedR← sort(R)
2: reduceLen← len(crash_input)/2
3: reducePos← len(crash_input)/2
4: while reduceLen ∈ (1, len(crash_input)) do
5: thd← sortedR[reducePos]
6: newinput← ””
7: for i ∈ (0, len(crash_input)) do
8: if sortedR[i]> thd then
9: newinput+= crash_input[i]

10: end if
11: end for
12: reduceLen/= 2
13: if Is_Crash_Triggered(newinput) then
14: reducePos−= reduceLen
15: else
16: reducePos+= reduceLen
17: end if
18: end while
19: return newinput

5 Evaluation

In this section, we describe the implementation, experiment
setting, and the evaluation results. We also present the com-
parison between SCREAM and state-of-the-art solutions. In
Appendix, we demonstrate two case studies to further illus-
trate how SCREAM accomplishes the reduction task.

5.1 Experimental Setting

Testing programs. In the experiments, we evaluated 41 pro-
grams including 29 CGC programs and 12 real-world pro-
grams. To fairly choose the programs, we select the programs
that have known crashes3 and belong to different software cat-
egories from the CGC program repositories and the CVE list,
without examining the details of crash and program internals.
The functionalities of CGC programs include gaming, image
processing, audio decoding, video decoding, network protocol
parsing, document file parsing, instruction emulation, router
simulation, mail service and etc. The real-world programs are
mainly used for image and document processing. In addition,
the crashing inputs are produced with afl-fuzz4.
Experimental setting. The experiments run on a Ubuntu
18.04 host machine with Intel i9-7900X CPU and 2080ti GPU.
We use the platform TensorFlow with Keras version 2.1.1.
For each program under test, multiple network instances are
running with different parameters at the same time to reduce
deviation. In particular, we train 10 network instances at the
same time and each network is trained for 10 times. In the
experiments, the fitting rates are found to be relatively high
(larger than 90%) after the training, indicating that the trained
networks are suitable for reducing test cases. Still, we select
the most fitted iteration round to obtain relevance score R for
the crashing input (the fitting rate is shown in Figure 4).

In regard to network hyper-parameters, since the convo-
lutional layers are used to encode the input, the depths of
convolutional layer and the kernel size are related to the size
of program input. We empirically set the depth of the convo-
lutional network based on the size of input and set the kernel
size and the stride according to the network depth. Similarly,
the size of feature vectors are also determined by the Conv1D
parameters and are empirically set. To make sure that the at-
tention mechanism can differentiate different input bytes and
to prevent vanishing gradient problems in LSTM, the output
size of the convolutional network is empirically set to a value
from 30 to 120 (when setting the output size to, for example,
500, the LSTM is unable to handle the situation). Besides, we
use L1 regularization to prevent overfitting.

Although the optimizations of hyper-parameters are impor-
tant to the fitting, the effect after optimization is still case-by-
case [11, 20]. Therefore, in practice, the hyper-parameters are
often empirically set by analysts based on their experience. In
that sense, some deviations are tolerable as long as the scale
is suitable and performance is satisfying. During the experi-
ments, we also tuned the hyper-parameters in different scales
and determined a set of combinations of hyper-parameters
that achieve satisfying performance. Table 3 shows a set of
candidate Conv1D parameters that we used in the experiments.

3For real-world programs, the crashes are fixed in new versions.
4With sufficient time of fuzzing (one week), afl-fuzz identified crashes

in 29 out of 40 CGC programs. However, we also selected 40 real-world
programs and afl-fuzz only reproduced crashes in 12 of them.

The combinations of Conv1D parameters are chosen from the
table with given input size.

Table 3: The convolutional layer’s parameter setting

Input Size Parameters of Conv1D
(kernel, stride) # of Layers

<500 (3,2),(3,1),(5,1),(5,2),(5,3) 3

<5000
(3,2),(3,1),(5,1),(5,2),(5,3),(5,4)
(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)

5

<50000
(3,2),(3,1),(5,1),(5,2),(5,3),(5,4)
(7,2),(7,3),(7,4),(7,5),(7,6),(9,3)

(9,4),(9,5),(9,6),(9,7),(9,8)
7

5.2 Overall Results
Table 4 in Appendix shows the overall statistics includ-
ing program name, details of crash, reduction rate (i.e.,
(size(Icrashing) − size(Iresult))/size(Icrashing)), time cost, as
well as the comparison on reduction, dataset augmentation,
and interpretability. The evaluated programs are crashed due
to variant causes, such as stack-based buffer overflow, heap-
based buffer overflow, out-of-bounds read and write, integer
overflow and etc. The size of crashing input varies from tens
of bytes to hundreds of kilobytes. Besides, given that the
fuzzer produces multiple crashing inputs for each program’s
crashing point, we evaluated two randomly-selected crashing
inputs per crash in the experiment. One crashing input per
crash is considered as a case. As such, there are 82 cases in
total.
Reduction rate and time cost. On the whole, SCREAM
achieves an average reduction rate of 75.4% which takes 29.8
minutes on average (the training time of multiple networks is
accumulated). The achieved reduction rate is highly related
to the size of crashing input and the ground truth but not
necessarily related to the root cause of crash, as shown in the
statistics of Table 4. In terms of time consumption, time is
mostly spent on training networks. For the network training,
since we train multiple networks at the same time, it takes
around 20 to 90 seconds for the training of one round for one
network. For relevance score computing, it takes around 5 to
20 seconds for each program.
Comparison with the state-of-the-art solutions. We com-
pared SCREAM with afl-tmin [1], Picireny [4], and Penum-
bra [21]. Afl-tmin is a widely-used test case minimizer in-
tegrated with American Fuzzy Lop (afl). It is a prominent
example of delta debugging implementation. Picireny is a
open-source hierarchical delta debugging framework, which
makes use of pre-defined structures of inputs to improve delta
debugging [28, 29]. Penumbra leverages dynamic taint analy-
sis to identify failure-relevant inputs.

We noticed that using extra time cost and extra reduction
rate to compare SCREAM with other tools is imprecise. For
instance, taking extra 15 minutes to achieve an extra reduc-
tion rate of 30% does not mean that SCREAM is more or

less efficient than the other tool. The trade-offs do not just
exist between time and reduction rate. Other factors such as
accuracy of reduction also matter. To this end, we define the
reduction efficiency E in Equation 8, which takes the amount
of reduction, time cost, and accuracy of reduction into con-
sideration. We use relative efficiency R in Equation 9 to fairly
compare the reduction efficiency, where:

E =
size(Icrashing)− size(Iresult)

time cost
× size(Iminimal)

size(Iresult)
(8)

R =
ESCREAM

Ea tool
(9)

In Equation 8, size(Iminimal) /size(Iresult) measures the ac-
curacy of reduction5, where Iminimal is the ground-truth input
and Iresult is the resulting input after reduction. (size(Icrashing)
− size(Iresult)) /time cost is the amount of reduction achieved
by the tool in a period of time, where Icrashing is the crashing
input.

The relative efficiency for afl-tmin, Picireny and Penumbra
on all evaluated programs is show in Figure 6. When R is
larger than 1 (i.e., logR is larger than 0), SCREAM outper-
forms the other tool. For instance, in case 12-1, the size of the
crashing input is 231, and the ground truth is 60. SCREAM
reduced the input size to 60 taking 15 minutes, and afl-tmin
reduced the input size to 178 taking 3 minutes. As a result,
the calculated reduction efficiency is 11.4 for SCREAM and
5.9 for afl-tmin. The efficiency ratio is 1.91, meaning that
SCREAM is more efficient. Although SCREAM takes more
time, such extra time consumption is worthwhile considering
the extra reduction.

When compared with afl-tmin and Penumbra, SCREAM
demonstrates surprising reduction capability with negligible
extra overhead, by achieving an extra reduction rate of 29.7%
and 53.4% with extra 12.2 minutes and 11.42 minutes, re-
spectively. For the comparison with Picireny, SCREAM’s
extra reduction rate is 29.7%, and the average time cost is
4.75 minutes less. Furthermore, SCREAM achieves a higher
reduction efficiency on 86.5% cases, 89.1% cases, and 100%
cases, when compared with afl-tmin, Picireny, and Penumbra,
respectively (shown in Figure 6). The low reduction efficiency
of afl-tmin can be attributed to the fact that the crashing inputs
contain dependent and discontinuous blocks which increase
the iteration round for afl-tmin. For Picireny, since no input
structure is given for the general programs in our evaluation,
it is depreciated to a delta debugging tool written in Python
with no optimizations. For Penumbra, the reduction efficiency
largely relies on the accurate specification of taint sinks which
involves root cause analysis of crash. In practice, however,
the specification is inevitably inaccurate for different types

5This value is small if the false negative rate is large, meaning that there
is still much reduction work left to do.

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
−2
−1

0
1
2
3

Re
la

tiv
e

Ef
fic

ie
nc

y
(lo

g)
relative efficiency SCREAM to AFL-TMIN
relative efficiency SCREAM to Picireny
relative efficiency SCREAM to Penumbra

Figure 6: Relative efficiency of SCREAM, afl-tmin, Picireny and Penumbra

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

FN
 R

at
e(

%
)

SCREAM
AFL-TMIN
Picireny
Penumbra

Figure 7: False negative rate of SCREAM, afl-tmin, Picireny and Penumbra

of crashes, resulting in imprecise information flows and low
reduction efficiency in the experiments.

Trade-offs between training time and performance. We
found that the effectiveness of reduction can be significantly
affected if the network training is not finished or the algo-
rithms do not terminate. For instance, when the training time
is only a half of the normal training time, we use the unfitted
network to identify failure-inducing inputs and the average
reduction rate is only 29.2%. Therefore, to complete the re-
duction task, all the tools should be sufficiently run to reach
their bottleneck. In the experiments, we make sure that (1)
afl-tmin, Picireny and Penumbra are sufficiently run and prop-
erly exit; (2) the neural network is well trained according
to the criteria described in Section 4 before it works on the
reduction.

5.3 Accuracy and Generality

False positives and false negatives. As described in Sec-
tion 4.5, our approach adopts binary search to reduce irrele-
vant input bytes and execute the program to confirm whether
the crash is indeed triggered. Therefore, SCREAM does
not report false positives. To check whether there are any
false negatives, we manually constructed minimal failure-
inducing inputs for each program crash after an automated
reduction procedure (i.e., by manually examining the re-
duced inputs and digging into program logic to remove ir-
relevant bytes). There is no guarantee that global optimum
of reduction is achieved. Thanks to SCREAM’s capabil-
ity to continuously mutate inputs and progressively reduce
them by adjusting the significance, the average false negative
rate (FNR = (size(Icrashing)− size(Iminimal))/size(Icrashing))
of SCREAM is 17.0% while the average FNR of afl-tmin, Pi-
cireny and Penumbra is 60.8%, 60.8% and 69.5%, respectively
(Figure 7 shows the FNR of SCREAM, afl-tmin, Picireny
and Penumbra on each case). With the help of SCREAM,
70.7% of the reduced inputs have reached ground truth. Such
improvement is made possible by SCREAM’s capability to
summarize the program logic, like transformation of control
flow-led input bytes, limitation on input length, requirement

of specific format, and etc.

Benefits of SCREAM. Although the size crashing input
could be extremely large in some cases, SCREAM is able
to focus on a subset of input bytes that are neither significant
nor insignificant and continuously mutate them, in order to
make a deviation from existing crashing inputs and achieve
control flow transfer in the program to some extent. From the
evaluation, we found that SCREAM is able to solve control
flow complexity in the following cases:

• The crashing input contains multiple discontinuous input
blocks that must be reduced at the same time. This kind
of constraint on input bytes appears in string search pro-
grams, chat programs, database programs, image process-
ing programs, news feed programs, calendar programs
and etc.

• The crashing input contains input blocks with specific
format (e.g., the format of IP address). We found that
such a constraint appears in software such as string
search, route management, 3D maps, instruction emula-
tor, json parser, photo management, image processing,
mail service client, TCP protocol stack and etc.

• The crashing input contains a field that specifies the min-
imal input length. The constraint appears in software
types like image processing, file compressing, string
search, profile management, Bluetooth communication
management and etc.

• The crashing input contains input blocks that directly
affect the program’s control flow. This constraint ap-
pears in instruction emulators, calculators, document
format converter, and document processing programs.
The above constraints are common in various types of
software, and it is easy for SCREAM to produce inputs
that satisfy them by marking significance on the input
bytes.

Limitations of SCREAM. Nevertheless, false negatives oc-
cur in the presence of complex arithmetic operations such
as checksum and other checksum-like functions that involve
calculation and multiple exact match of data values. In our
evaluation, the complex arithmetic operations are shown in
the software that involves error detection, data integrity check

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

Re
du

ct
io

n
Ra

te
(%

)

SCREAM
AFL

Figure 8: Reduction rate when adopting SCREAM’s mutation technique and AFL’s mutation engine

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1

50000

100000

150000

200000

of

 S
am

pl
es

 G
en

er
at

ed

SCREAM
AFL

Figure 9: # of Samples generated by SCREAM’s mutation technique and AFL’s mutation engine

and data indexing, such as audio processing software, video
processing software, and USB communication management
(packet processing) software.

In the presence of complex arithmetic operations in pro-
gram inputs, the reduction efficiency of afl-tmin and Picireny
is higher than that of SCREAM. Given the simplicity of afl-
tmin and Picireny’s reduction algorithm, they are unable to
handle the complexity in input structures as well. In this case,
afl-tmin and Picireny take less time in processing the inputs,
which results in higher reduction efficiency.

Limited by current computation power and network ar-
chitectures, handling complex arithmetic operations like
checksum-like functions is still beyond the expressiveness of
neural networks.

5.4 Comparison on Dataset Augmentation
and Interpretability

Comparison with AFL’s mutation engine. To demonstrate
the efficacy of our dataset augmentation algorithm, we com-
pared our approach with AFL’s mutation engine [49]. To
construct a dataset with the samples produced by AFL, we
modified AFL by removing its path exploration functions and
preserving its genetic algorithm-based mutation functions.
As the neural network takes input with a fixed size, we se-
lect the samples of which the size is equal to or smaller than
the original crashing input. For the produced samples with
shorter sizes, we fill the gap with “-1”. Therefore, all the sam-
ples produced by AFL have the same size as the size of the
original input. After that, we send the dataset constructed by
AFL’s engine to the backend (i.e., the network component) of
SCREAM for further processing. It turns out that when using
AFL’s mutation engine, more samples are produced (on aver-
age, the number of samples consumed is increased by 163.4%
as shown in Figure 9.) but less reduction efficiency is achieved
(shown in Figure 8). Thanks to SCREAM’s dataset augmen-
tation algorithm which tends to produce highly-differentiable
samples in input space, it is easier for the neural network to
draw a more accurate boundary even with less samples. On
the other hand, with our approach, each round of calculated

relevance score can correct the deviation during network train-
ing, which tends to produce a more accurate relevance score
in the end.
Comparison with partial derivatives. Partial derivatives
is also an important approach of interpretability which has
been used in binary analysis tasks (e.g., Neuzz [41] and Neu-
Taint [40]]). To compare the two interpretability approaches,
namely the attention mechanism and partial derivatives, we
use the implementation of Neuzz with the same dataset to
calculate the significance. Figure 10 shows the reduction effi-
ciency when adopting both approaches. It turns out that less
reduction efficiency is achieved by the partial derivative ap-
proach. The main cause is that, there exists the saturation
problem for partial-derivative-based approach, which under-
estimates the importance of features to the output and affects
the calculated significance. In the experiments, when the input
length is 200, SCREAM and neuzz have similar magnitude
of trainable parameters. Nevertheless, when the input length
reaches 1000, the trainable parameters of neuzz are at least ten
times of SCREAM’s, which causes overfitting to the network.
This eventually affects the calculation on the significance.

6 Related Work

6.1 Test Case Reduction

Existing techniques of test case reduction can be categorized
as random reduction and rule-based approaches. Random
reduction approaches treat the program as a blackbox and
randomly or strategically mutate the program input. A promi-
nent example is delta debugging. Zeller et al. [50] proposed
to use binary search for delta debugging. The core idea is to
randomly reduce a portion of input and gradually increase the
granularity of reduction. This approach assumes that the input
bytes are independent with each other. Otherwise, the reduc-
tion of dependent input bytes could lead to failures. As a result,
delta debugging is not applicable to file (e.g., documents, im-
ages, and etc.) processing programs, as those programs digest
structural inputs that usually involve interdependence among
input blocks. To this end, Groce et al. [25], Regehr et al. [37],

1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1 7-0 7-1 8-0 8-1 9-0 9-1 10-0 10-1 11-0 11-1 12-0 12-1 13-0 13-1 14-0 14-1 15-0 15-1 16-0 16-1 17-0 17-1 18-0 18-1 19-0 19-1 20-0 20-1 21-0 21-1 22-0 22-1 23-0 23-1 24-0 24-1 25-0 25-1 26-0 26-1 27-0 27-1 28-0 28-1 29-0 29-1 30-0 30-1 31-0 31-1 32-0 32-1 33-0 33-1 34-0 34-1 35-0 35-1 36-0 36-1 37-0 37-1 38-0 38-1 39-0 39-1 40-0 40-1 41-0 41-1
0

10
20
30
40
50
60
70
80
90

Re
du

ct
io

n
Ra

te
(%

)

SCREAM
partial derivatives

Figure 10: Reduction rate when adopting SCREAM’s attention mechanism and partial derivatives

and Pike et al. [36] proposed different reduction strategies to
target specific programs with known input structures. How-
ever, those approaches are less adaptable to general programs.
On the other hand, in regard to rule-based approaches, Clause
and Orso [21] proposed to mark the input bytes that contribute
to the crash using taint analysis. However, this requires man-
ual analysis of the crash to determine taint sinks. Moreover,
making accurate taint policy is challenging because of the
control flow dependence problem.

Another line of research is root cause analysis. To locate
the program entities (e.g., functions and basic blocks) related
to the crashing point, existing root cause analysis approaches
leverage statistical information of program runtime behaviors
[6,12,26,47], use backward dataflow analysis [7,39], or utilize
information from bug reports [45, 46, 52]. Since root cause
analysis is complicated and still involves manual analysis,
it cannot be used for test case reduction. In contrast, test
case reduction is a necessary step to improve the accuracy of
identifying a candidate set of crash-related program entities.

The problem of test case reduction is also related to
fuzzing [13,18,24, 35,41,43]. The purpose of test case reduc-
tion is to reduce the length of crashing inputs after crashes
have been triggered in fuzzing. To this aim, SCREAM pro-
duces diverse inputs that are scattered in the input space, for
the purpose of network training and reduction. Different from
that, fuzzers like AFL [49], Driller [43], Angora [18] and
Neuzz [41] tend to produce inputs that are clustered in the
input space, with the aim of exploring program paths and
triggering/discovering crashes. The way of fuzzers’ input
generation is not suitable for neural-network-based test case
reduction.

6.2 Interpretability of Neural Networks

With proper datasets, the neural network can automatically fit
the function of the input and the output. The interpretability
of neural network is to understand how each input compo-
nent affects the output, and the method that explores every
input component’s influence to the output is called network
explanation method. Omeiza et al. [34] proposed to determine
the importance of every input pixel to the output by comput-
ing the gradient value of a fitted neural network. However, it
would lead to the saturation problem which underestimates
the importance of features to the output. Shrikumar et al. [42]
compared the activation of each neuron to its “reference acti-
vation” and assigned relevance scores according to the differ-
ence. Such a method is applicable to the explanation of the

network itself and cannot compute the relevance score for the
input. Sutskever et al. [44] proposed the attention mechanism
with seq2seq networks by distributing the weight to each input
component using a similarity function, which is supposed to
avoid the saturation problem. After that, the attention mecha-
nism has been widely applied in the NLP area. Generally, the
explanation method of neural network aims to improve the
fitting accuracy of the network. In this paper, we utilize the
explanation method to determine the failure-inducing input
that contributes to the crash.

7 Conclusion

In this paper, we have presented SCREAM, a deep learning-
based solution for test case reduction. In particular, we utilize
the neural network to approximate the computation from the
program input to the crash and leverage the attention mecha-
nism of neural network to determine the contribution of each
input bytes to the crash. We also presented several novel tech-
niques including an online dataset augmentation technique
that can produce highly-differentiable samples and works in
conjunction with the network, and a new network architecture
to process long input sequences. We evaluated SCREAM on
41 programs including 29 CGC programs and 12 real-world
programs. The results show that our approach is effective and
accurate in test case reduction.

References

[1] “ afl-tmin - test case minimizer for American Fuzzy Lop
(afl),” http://manpages.ubuntu.com/manpages/xenial/
man1/afl-tmin.1.html, Accessed: May 2021.

[2] “Lecture Notes on Delta Debugging,” https:
//www.cs.purdue.edu/homes/suresh/408-Spring2017/
Lecture-9.pdf, Accessed: May 2021.

[3] “On-Hot - Wikipedia,” https://en.wikipedia.org/wiki/
One-hot, Accessed: May 2021.

[4] “Picireny: Hierarchical Delta Debugging Framework,”
https://github.com/renatahodovan/picireny, Accessed:
May 2021.

[5] “Up-sampling,” https://en.wikipedia.org/wiki/
Upsampling, Accessed: May 2021.

http://manpages.ubuntu.com/manpages/xenial/man1/afl-tmin.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/afl-tmin.1.html
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/One-hot
https://github.com/renatahodovan/picireny
https://en.wikipedia.org/wiki/Upsampling
https://en.wikipedia.org/wiki/Upsampling

[6] R. Abreu, P. Zoeteweij, and A. J. C. V. Gemund, “On
the accuracy of spectrum-based fault localization,” in
Testing: Academic and Industrial Conference Practice
and Research Techniques-mutation, 2007.

[7] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong,
“Fault localization using execution slices and dataflow
tests,” in Proceedings of Sixth International Symposium
on Software Reliability Engineering. ISSRE’95, 2002.

[8] C. Artho, “Iterative delta debugging,” International Jour-
nal on Software Tools for Technology Transfer, vol. 13,
no. 3, pp. 223–246, 2011.

[9] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Sta-
tistical debugging using compound boolean predicates,”
in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 5–15.

[10] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” J. Mach. Learn. Res., vol. 13,
pp. 281–305, 2012.

[12] T. Blazytko, M. Schlögel, C. Aschermann, A. Abbasi,
J. Frank, S. Wörner, and T. Holz, “Aurora: Statistical
crash analysis for automated root cause explanation,” in
29th USENIX Security Symposium, 2020.

[13] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2329–2344.

[14] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,”
IEEE Transactions on Software Engineering, vol. 45,
no. 5, pp. 489–506, 2017.

[15] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow,
“Thermometer encoding: One hot way to resist adversar-
ial examples,” in ICLR, 2018.

[16] M. Carbin and M. C. Rinard, “Automatically identify-
ing critical input regions and code in applications,” in
Proceedings of the 19th international symposium on
Software testing and analysis, 2010, pp. 37–48.

[17] S. Chaudhari, G. Polatkan, R. Ramanath, and V. Mithal,
“An attentive survey of attention models,” arXiv preprint
arXiv:1904.02874, 2019.

[18] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA.

[19] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce,
“Reduce before you localize: Delta-debugging and
spectrum-based fault localization,” in 2018 IEEE Inter-
national Symposium on Software Reliability Engineer-
ing Workshops (ISSREW). IEEE, 2018, pp. 184–191.

[20] M. Claesen and B. D. Moor, “Hyperparameter search in
machine learning,” CoRR, vol. abs/1502.02127, 2015.

[21] J. Clause and A. Orso, “Penumbra: automatically iden-
tifying failure-relevant inputs using dynamic tainting,”
in Proceedings of the eighteenth international sympo-
sium on Software testing and analysis. ACM, 2009,
pp. 249–260.

[22] H. Cleve and A. Zeller, “Locating causes of program
failures,” in 27th international conference on Software
Engineering. ACM, 2005.

[23] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-
based whitebox fuzzing,” in Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 206–215.

[24] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: white-
box fuzzing for security testing,” Queue, vol. 10, no. 1,
pp. 20–27, 2012.

[25] A. Groce, G. Holzmann, and R. Joshi, “Randomized
differential testing as a prelude to formal verification,” in
29th International Conference on Software Engineering
(ICSE’07). IEEE, 2007, pp. 621–631.

[26] M. J. Harrold, G. Rothermel, and K. Sayre, “An empir-
ical investigation of the relationship between spectra
differences and regression faults,” Software Testing, Ver-
ification and Reliability, 2000.

[27] X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S.
Chua, “Nais: Neural attentive item similarity model for
recommendation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 12, pp. 2354–2366,
2018.

[28] R. Hodován and Á. Kiss, “Modernizing hierarchical
delta debugging,” in Proceedings of the 7th Interna-
tional Workshop on Automating Test Case Design, Se-
lection, and Evaluation, A-TEST@SIGSOFT FSE 2016,
Seattle, WA, USA, November 18, 2016, T. E. J. Vos,
S. Eldh, and W. Prasetya, Eds.

[29] R. Hodován, Á. Kiss, and T. Gyimóthy, “Tree prepro-
cessing and test outcome caching for efficient hierar-
chical delta debugging,” in 12th IEEE/ACM Interna-
tional Workshop on Automation of Software Testing,
AST@ICSE 2017, Buenos Aires, Argentina, May 20-21,
2017.

[30] W. Jin and A. Orso, “F3: fault localization for field fail-
ures,” in Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis.

[31] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 2123–2138.

[32] J. Li, W. Monroe, and D. Jurafsky, “Understanding
neural networks through representation erasure,” arXiv
preprint arXiv:1612.08220, 2016.

[33] G. Misherghi and Z. Su, “HDD: hierarchical delta de-
bugging,” in 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006, L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
Eds. ACM, pp. 142–151.

[34] D. Omeiza, S. Speakman, C. Cintas, and K. Welder-
mariam, “Smooth grad-cam++: An enhanced inference
level visualization technique for deep convolutional neu-
ral network models,” arXiv preprint arXiv:1908.01224,
2019.

[35] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
Fuzzing by program transformation,” in 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA.

[36] L. Pike, “Smartcheck: automatic and efficient counterex-
ample reduction and generalization,” in ACM SIGPLAN
Notices, vol. 49, no. 12. ACM, 2014, pp. 53–64.

[37] J. Regehr, Y. Chen, P. Cuoq, E. Eide, and C. Ellison,
“Test-case reduction for c compiler bugs,” in ACM SIG-
PLAN Notices, 2012.

[38] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang, “Test-case reduction for C compiler bugs,” in
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, J. Vitek, H. Lin, and F. Tip, Eds.
ACM, 2012, pp. 335–346.

[39] M. Renieres and S. P. Reiss, “Fault localization with
nearest neighbor queries,” in 18th IEEE International
Conference on Automated Software Engineering, 2003.
Proceedings. IEEE, 2003, pp. 30–39.

[40] D. She, Y. Chen, A. Shah, B. Ray, and S. Jana, “Neutaint:
Efficient dynamic taint analysis with neural networks,”
in 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
2020, pp. 1527–1543.

[41] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana,
“NEUZZ: efficient fuzzing with neural program smooth-
ing,” in 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019.

[42] A. Shrikumar, P. Greenside, and A. Kundaje, “Learn-
ing important features through propagating activation
differences,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 3145–3153.

[43] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“Driller: Augmenting fuzzing through selective symbolic
execution.” in NDSS, vol. 16, no. 2016, 2016, pp. 1–16.

[44] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to se-
quence learning with neural networks,” Advances in
NIPS, 2014.

[45] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, and H. Mei,
“Boosting bug-report-oriented fault localization with seg-
mentation and stack-trace analysis,” in IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion, 2014.

[46] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlo-
cator: locating crashing faults based on crash stacks,” in
Proceedings of the 2014 International Symposium on
Software Testing and Analysis, 2014, pp. 204–214.

[47] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical
analysis of the risk evaluation formulas for spectrum-
based fault localization,” Acm Transactions on Software
Engineering and Methodology, vol. 22, no. 4, pp. 1–40,
2013.

[48] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, at-
tend and tell: Neural image caption generation with vi-
sual attention,” in International conference on machine
learning, 2015, pp. 2048–2057.

[49] M. Zalewski, “American fuzzy lop,” URL: http://lcamtuf.
coredump. cx/afl, 2017.

[50] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[51] X. Zhang, N. Gupta, and R. Gupta, “Locating faults
through automated predicate switching,” in Proceedings
of the 28th international conference on Software engi-
neering. ACM, 2006, pp. 272–281.

[52] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs
be fixed? more accurate information retrieval-based bug
localization based on bug reports,” in International Con-
ference on Software Engineering, 2012.

Appendices

A Case Studies

Jhead. Jhead is a real-world command-line tool for process-
ing EXIF information of images. The EXIF information in-
cludes camera model, resolution, ISO value, GPS information,
and etc. When the jhead program parses the segment that
stores GPS information, providing a negative float value in
the input would cause a stack-based overflow in the sprintf
function at line 17, as the program does not check the sign of
the variable.

1 void ProcessGpsInfo(unsigned char *
DirStart ,

2 unsigned char *OffsetBase , unsigned
ExifLength)

3 {...
4 ValuePtr = OffsetBase+OffsetVal;
5 ...
6 switch(Tag){
7 char TempString [50];
8 ...
9 case TAG_GPS_LAT:

10 case TAG_GPS_LONG:
11 ...
12 strcpy(FmtString ,"%0.0fd %0.0fm %0.0fs");
13 ...
14 for (a=0;a<3;a++){
15 int den , digits;
16 Values[a] = ConvertAnyFormat(ValuePtr+a*

ComponentSize , Format); }
17 sprintf(TempString , FmtString , Values[0],

Values[1], Values[2]);
18 ...
19 break;
20 ...}}

Listing 2: The code where the fault locates

The important input bytes that contribute to the crash are
the control data “ff 05 00” that directs the program to pro-
cess GPS information and the invalid float value that causes
the overflow. Taint analysis approaches cannot identify the
input bytes that contribute to the crash, as the invalid float
value is from snprintf function which is not directly from
the program input.

In Figure 11 (horizontal axis represents index of input
byte, while vertical axis represents importance), we show how
SCREAM scores the importance of the input bytes in round
1, round 5, and round 10. As can be seen, the score of the
input bytes that are irrelevant to the crash decreases during the
training process. Initially the original size of crashing input
is 320 bytes. At round 5, the relevance score becomes stable
and SCREAM outputs a failure-inducing input with 63 bytes.
The mutation of samples and the network training is based
on the result of previous rounds, which allows the network to
correct errors in the fitting. In this case, the 320-byte input
size is reduced to 63 bytes in 5-minute training.

Figure 11: Relevance score of jhead at round 1, 5 and 10

Simple stack machine. Simple Stack Machine is a CGC
program and an instruction emulator that takes instructions as
input. This program requests a piece of heap area and uses it
as the “stack” of the emulator. The crash was discovered using
AFL. We show the crashing input in Listing 3. As can be seen,
starting from line 1 to line 6, a series of “push” instructions
push data to the stack. At line 7, a “sub” instruction stores
the subtracted result “0” to the stack. At line 8, the “jmpz”
instruction pops the top value off of the stack. If the value is
0, the emulator pops the next value off the stack and uses it
as the next instruction. As such, the root cause of the crash is
that, as long as the top of stack stores two “0”s, the emulator
will jump to the first byte of the input at line 1, which forms
a dead loop, keeps pushing data to the stack, and eventually
causes heap overflows.

1 00 41 33 60 //push 0xC066820
2
3 00 32 d3 d3 // push 0x1A7A6640
4 00 00 00 00 // push 0x0
5 00 04 00 02 // push 0x400080
6 00 04 00 02 // push 0x400080
7 7f 12 39 d1 // sub; pop top two on the

stack and push the result to the stack
8 d3 c6 d3 d3 //jmpz
9 00 00 00 7f // push 0xFE00000

10 ff ff ff ff // end
11 12 34 12 35 12 35 12 45

Listing 3: The crashing input in round 1

Actually, the push instructions from line 1 to line 3 are
irrelevant to the crash. For afl-tmin, to trigger the crash, it
has to keep the instructions from line 4 to line 8. For our
approach, in the first round, SCREAM outputs a preliminary
relevance score indicating that instructions from line 4 to line
8 are significant, which is the same as the afl-tmin’s result.

As the “push 0x0” instruction at line 4 receives the highest
score (mutating it would not lead to any crashes), the next
round of mutation only acts on the instructions from line 5 to
line 8. We show the intermediate result in round 7 in Listing 4.
After that, the iteration proceeds until round 10 when the
relevance score becomes stable (the change of relevance score
is shown in Figure 12). In the end, a final failure-inducing
input is produced in Listing 5. In this example, the input size
is reduced from 73 bytes to 20 bytes in 8-minute training

Figure 12: Relevance score of Simple Stack Machine at round
1, 7 and 10

1 80 ff 33 60 // push 0xC067FF0
2 a8 fd fa 91 // push 0x123F5FB5
3
4 f0 32 f0 d3 // push
5 00 00 00 00 // push 0x0
6 00 04 00 02 // push 0x400080
7 f1 04 00 02 // pop
8 d3 57 27 28 // jmpz
9 d3 ff b2 4c // jmpz

10 12 ba de f5 // pushpc , push 0xC
11 ff ff ff ff // end
12 12 10 56 1c 85 1c dd 36

Listing 4: The crashing input generated in round 7

1 80 ff 33 60 // push 0xC067FF0
2
3 f0 32 f0 d3 // push 0x1A7E065E
4 00 00 00 00 // push 0x0
5 00 00 00 00 // push 0x0
6 f7 ff d8 ad // jmpz
7 09 89 67 13 // pushpc ,push 0xB
8 46 57 42 ed // add
9 f2 90 76 36 // pushpc ,push 0xD

10 ff ff ff ff // end
11 12 10 56 1c 85 1c dd 36

Listing 5: The crashing input generated in round 10

Ta
bl

e
4:

O
ve

ra
ll

St
at

is
tic

s

N
o

Pr
og

ra
m

Si
ze

of
C

ra
sh

In
pu

t
G

ro
un

d
Tr

ut
h

In
pu

t
Fi

tt
in

g
R

at
e

(%
)

R
ed

uc
tio

n
R

at
e

(%
)

Ti
m

e
(m

in
)

#
of

Sa
m

pl
es

(P
os

./
To

ta
l)

C
om

pa
ri

so
n

on
R

ed
uc

tio
n

(w
/a

fl-
tm

in
/P

ic
ir

en
cy

/P
en

um
br

a)
C

om
pa

ri
so

n
on

D
at

as
et

A
ug

m
en

ta
tio

n
(w

/A
FL

)
C

om
pa

ri
so

n
on

In
te

rp
re

ta
bi

lit
y

(w
/P

ar
tia

lD
er

iv
at

iv
es

)

Ti
m

e
(m

in
)

R
el

at
iv

e
E

ffi
ci

en
cy

#
of

Sa
m

pl
es

(P
os

|T
ot

al
)

R
el

at
iv

e
E

ffi
ci

en
cy

R
ed

uc
tio

n
R

at
e

(%
)

R
el

at
iv

e
E

ffi
ci

en
cy

1
St

ri
ng

St
or

ag
e

an
d

R
et

ri
ev

al
34

8/
64

8
12

/1
2

(9
5.

0|
99

.0
)/

(9
4.

0|
99

.0
)

96
.6

/9
8.

1
21

/2
4

(8
69

|2
40

0)
/(

18
96

|5
40

0)
(2

/8
/8

)/
(2

/8
/8

)
(2

.1
/0

.5
/N

/A
)/

(2
.2

/0
.5

/N
/A

)
(2

78
5/

78
61

)/
(4

24
3/

12
71

6)
84

.6
/7

7.
4

40
.0

/6
0.

0
21

.9
/3

1.
1

2
Te

xt
Se

ar
ch

54
2/

47
6

5/
5

(9
3.

0|
98

.0
)/

(9
5.

0|
99

.0
)

99
.1

/9
8.

9
32

/3
8

(2
59

3|
72

00
)/

(2
63

7|
72

00
)

(3
/1

2/
7)

/(
2/

9/
9)

(0
.4

/0
.1

/N
/A

)/
(0

.9
/0

.2
/N

/A
)

(6
74

6/
19

87
1)

/(
68

07
/1

89
27

)
56

.7
/1

2.
0

80
.0

/8
0.

0
12

.6
/1

1.
2

3
st

re
am

_v
m

65
9/

75
8

12
/1

2
(9

2.
0|

97
.0

)/
(9

5.
0|

98
.0

)
96

.2
/9

5.
8

21
/2

2
(3

47
5|

96
00

)/
(3

23
6|

96
00

)
(3

/1
3/

12
)/

(2
/1

4/
11

)
(2

.0
/0

.5
/N

/A
)/

(4
.8

/0
.7

/N
/A

)
(1

08
65

/3
01

82
)/

(1
04

23
/2

87
19

)
18

.3
/1

1.
6

40
.0

/4
0.

0
30

.7
/3

5.
2

4
st

ac
k_

vm
30

50
/3

55
0

12
/1

2
(9

4.
0|

99
.0

)/
(9

5.
0|

99
.0

)
97

.8
/9

6.
5

48
/5

0
(4

48
8|

12
40

0)
/(

42
43

|1
24

00
)

(5
/2

3/
23

)/
(5

/2
5/

22
)

(1
.1

/0
.2

/N
/A

)/
(0

.5
/0

.1
/N

/A
)

(1
32

23
/3

67
16

)/
(1

29
06

/3
76

12
)

54
.4

/2
4.

2
70

.0
/6

0.
0

15
.1

/1
1.

1
5

hu
m

an
in

te
rf

ac
e

87
62

/5
34

1
98

/9
8

(9
1.

0|
97

.0
)/

(9
3.

0|
96

.0
)

98
.4

/9
6.

9
68

/6
6

(8
52

6|
24

00
0)

/(
68

57
|1

96
00

)
(8

/5
2/

18
)/

(9
/4

8/
16

)
(1

.1
/0

.2
/0

.5
)/

(3
.4

/0
.6

/1
.9

)
(2

01
07

/5
62

71
)/

(1
60

72
/4

75
61

)
17

.0
/1

8.
5

70
.0

/4
0.

0
21

.2
/3

6.
5

6
SF

T
SC

B
SI

SS
32

71
/2

33
1

16
2/

16
2

(9
4.

0|
98

.0
)/

(9
5.

0|
97

.0
)

95
.0

/9
3.

1
53

/5
6

(7
11

9|
19

60
0)

/(
48

72
|1

44
00

)
(6

/3
0/

13
)/

(7
/2

0/
12

)
(8

.5
/1

.7
/3

.9
)/

(4
.0

/1
.4

/2
.3

)
(1

95
49

/5
42

12
)/

(1
43

88
/4

31
21

)
21

.5
/2

1.
4

80
.0

/4
0.

0
4.

4/
9.

6
7

ro
ut

er
_s

im
ul

at
or

34
61

/2
38

1
10

67
/1

06
7

(9
5.

0|
99

.0
)/

(9
5.

0|
98

.0
)

69
.2

/5
5.

2
29

/2
2

(3
36

5|
96

00
)/

(3
32

5|
96

00
)

(8
/2

4/
17

)/
(7

/1
8/

16
)

(9
9.

4/
33

.1
/4

6.
8)

/(
12

8.
7/

50
.0

/5
6.

3)
(8

29
6/

23
61

2)
/(

95
45

/2
71

52
)

4.
7/

5.
2

40
.0

/2
0.

0
4.

5/
6.

2
8

R
es

or
t_

M
od

el
le

r
35

84
/4

67
3

92
/9

2
(9

4.
0|

96
.0

)/
(9

3.
0|

99
.0

)
95

.2
/9

6.
5

76
/8

2
(5

11
1|

14
40

0)
/(

51
58

|1
44

00
)

(1
1/

27
/1

8)
/(

10
/2

4/
16

)
(4

.4
/1

.8
/2

.7
)/

(2
.7

/1
.1

/5
.7

)
(9

91
2/

27
61

2)
/(

99
16

/2
80

89
)

14
.5

/1
2.

5
50

.0
/5

0.
0

10
.2

/1
2.

1
9

re
al

ly
st

re
am

18
97

61
/1

41
29

1
13

11
03

/1
31

10
3

(9
5.

0|
97

.0
)/

(9
2.

0|
98

.0
)

30
.9

/7
.2

44
/3

8
(6

58
3|

19
60

0)
/(

70
96

|1
96

00
)

(7
2/

13
2/

26
)/

(5
7/

12
3/

23
)

(8
14

.7
/4

44
.4

/N
/A

)/
(1

78
.7

/8
2.

8/
N

/A
)

(1
21

17
/3

47
61

)/
(1

17
56

/3
26

77
)

1.
9/

1.
7

20
.0

/0
.0

4.
2/

17
.0

10
Q

ue
ry

_C
al

cu
la

to
r

45
6/

98
2

6/
6

(9
5.

0|
99

.0
)/

(9
4.

0|
96

.0
)

80
.5

/8
7.

5
28

/1
8

(3
32

8|
96

00
)/

(3
32

8|
96

00
)

(5
/1

3/
11

)/
(6

/1
7/

13
)

(0
.3

/0
.1

/0
.1

)/
(0

.4
/0

.2
/0

.1
)

(8
36

2/
23

09
5)

/(
75

95
/2

11
02

)
9.

2/
7.

5
50

.0
/6

0.
0

3.
6/

11
.4

11
PT

aa
S

78
7/

84
7

29
/2

9
(9

5.
0|

99
.0

)/
(9

1.
0|

98
.0

)
96

.3
/9

6.
6

34
/3

5
(2

49
0|

74
00

)/
(2

68
2|

74
00

)
(9

/2
1/

15
)/

(1
0/

23
/1

2)
(7

.1
/3

.0
/0

.8
)/

(4
.5

/2
.0

/2
.1

)
(6

63
3/

19
01

6)
/(

73
77

/2
01

84
)

26
.2

/4
2.

4
60

.0
/5

0.
0

15
.9

/4
1.

7
12

PR
U

23
1/

18
9

60
/6

0
(9

3.
0|

97
.0

)/
(9

4.
0|

99
.0

)
74

.0
/6

8.
3

15
/1

1
(1

21
7|

36
00

)/
(1

28
9|

36
00

)
(3

/8
/1

1)
/(

3/
8/

12
)

(6
.0

/2
.2

/N
/A

)/
(4

.4
/1

.6
/N

/A
)

(3
51

0/
97

69
)/

(3
25

3/
88

77
)

6.
1/

5.
7

50
.0

/2
0.

0
2.

5/
8.

4
13

Pr
in

te
r

42
36

/5
03

4
52

3/
52

3
(9

5.
0|

99
.0

)/
(9

4.
0|

98
.0

)
87

.7
/8

9.
6

69
/7

2
(6

90
1|

19
60

0)
/(

70
89

|1
96

00
)

(1
4/

35
/1

8)
/(

17
/3

8/
17

)
(2

4.
3/

9.
7/

18
.9

)/
(7

.0
/3

.1
/7

.0
)

(1
66

41
/4

61
52

)/
(1

78
50

/5
00

98
)

4.
5/

5.
6

20
.0

/5
0.

0
24

.6
/5

.8
14

Pe
rs

on
al

_F
itn

es
s_

M
an

ag
er

23
4/

19
8

10
0/

10
0

(9
5.

0|
99

.0
)/

(9
3.

0|
98

.0
)

11
.5

/1
.5

18
/1

2
(1

84
5|

54
00

)/
(1

96
9|

54
00

)
(4

/1
1/

16
)/

(3
/7

/1
4)

(3
.3

/1
.2

/0
.4

)/
(0

.5
/0

.2
/0

.1
)

(4
53

7/
12

98
1)

/(
39

53
/1

10
77

)
2.

4/
2.

1
10

.0
/0

.0
1.

1/
1.

5
15

O
ve

rfl
ow

_P
ar

kn
g

72
34

/5
09

8
77

/7
7

(9
3.

0|
96

.0
)/

(9
5.

0|
98

.0
)

98
.9

/9
8.

5
72

/6
8

(6
20

3|
17

20
0)

/(
48

30
|1

44
00

)
(2

2/
48

/2
0)

/(
16

/3
8/

16
)

(2
.7

/1
.2

/1
.5

)/
(1

.2
/0

.5
/0

.1
)

(1
02

21
/2

98
88

)/
(1

04
35

/3
01

98
)

8.
8/

6.
2

80
.0

/8
0.

0
18

.1
/1

0.
5

16
on

el
in

e_
jo

b_
ap

pl
ic

at
on

2
57

81
/4

06
7

42
5/

42
5

(9
2.

0|
99

.0
)/

(9
5.

0|
97

.0
)

92
.6

/8
9.

6
27

/2
1

(2
74

3|
76

00
)/

(2
61

9|
76

00
)

(3
7/

63
/1

7)
/(

30
/6

7/
18

)
(1

44
.8

/8
5.

0/
12

2.
3)

/(
12

1.
4/

54
.4

/8
6.

5)
(7

93
5/

22
31

2)
/(

82
85

/2
31

23
)

2.
9/

3.
0

90
.0

/8
0.

0
2.

4/
3.

6
17

ne
ts

to
ra

ge
54

8/
45

9
17

0/
17

0
(9

4.
0|

98
.0

)/
(9

3.
0|

97
.0

)
36

.5
/3

9.
2

21
/2

4
(3

20
8|

96
00

)/
(3

24
0|

96
00

)
(5

/1
2/

12
)/

(5
/1

2/
11

)
(1

9.
5/

8.
1/

N
/A

)/
(2

1.
9/

9.
1/

N
/A

)
(9

29
1/

27
81

1)
/(

73
08

5/
21

23
71

)
2.

9/
22

.1
30

.0
/4

0.
0

1.
7/

0.
9

18
M

ul
ti_

U
se

r_
C

al
en

da
r

25
09

/2
38

7
13

01
/1

30
1

(9
3.

0|
96

.0
)/

(9
3.

0|
98

.0
)

44
.3

/4
4.

6
34

/2
9

(4
05

9|
12

00
0)

/(
43

30
|1

20
00

)
(7

2/
12

0/
40

)/
(7

7/
12

3/
42

)
(1

3.
8/

8.
3/

24
.8

)/
(1

1.
5/

7.
2/

21
.1

)
(1

17
82

/3
46

17
)/

(1
10

60
/3

10
76

)
3.

0/
2.

8
30

.0
/2

0.
0

2.
3/

3.
6

19
m

id
dl

eO
ut

10
21

12
/9

83
51

62
/6

2
(9

4.
0|

97
.0

)/
(9

5.
0|

97
.0

)
99

.6
/9

9.
8

42
/4

2
(3

40
1|

96
00

)/
(3

26
3|

96
00

)
(8

0/
16

1/
50

)/
(6

0/
12

1/
48

)
(0

.2
/0

.1
/0

.1
)/

(0
.2

/0
.1

/0
.1

)
(7

84
8/

23
41

9)
/(

76
86

/2
21

34
)

5.
3/

6.
6

10
0.

0/
10

0.
0

4.
6/

12
.9

20
M

es
sa

ge
_S

er
vi

ce
57

12
/3

57
2

25
69

/2
56

9
(9

4.
0|

96
.0

)/
(9

6.
0|

97
.0

)
55

.0
/2

8.
1

46
/3

9
(4

29
1|

12
00

0)
/(

43
93

|1
20

00
)

(7
8/

14
2/

32
)/

(5
2/

11
0/

29
)

(4
0.

3/
22

.1
/0

.2
)/

(1
9.

3/
9.

1/
7.

7)
(1

06
90

/2
98

71
)/

(8
29

1/
23

11
1)

2.
5/

1.
9

40
.0

/1
0.

0
2.

3/
2.

4
21

L
az

yC
al

c
67

8/
54

8
16

/1
6

(9
4.

0|
97

.0
)/

(9
3.

0|
95

.0
)

85
.0

/8
6.

5
42

/3
2

(2
46

0|
72

00
)/

(2
55

0|
72

00
)

(2
0/

42
/1

7)
/(

15
/3

5/
16

)
(0

.4
/0

.2
/0

.2
)/

(0
.4

/0
.2

/0
.3

)
(8

26
5/

24
21

1)
/(

65
99

/1
90

81
)

13
.1

/1
2.

4
60

.0
/2

0.
0

1.
8/

14
.9

22
IN

SU
L

A
T

R
35

6/
21

2
45

/4
5

(9
5.

0|
98

.0
)/

(9
2.

0|
94

.0
)

87
.4

/7
8.

8
38

/3
2

(1
90

6|
54

00
)/

(1
97

5|
54

00
)

(4
/9

/1
2)

/(
4/

9/
10

)
(7

.0
/3

.1
/2

.2
)/

(7
.4

/3
.3

/1
.6

)
(4

47
9/

13
41

1)
/(

45
20

/1
29

87
)

7.
6/

7.
8

60
.0

/1
0.

0
1.

5/
21

.3
23

H
IG

H
C

O
O

16
38

2/
12

73
7

81
94

/8
19

4
(9

5.
0|

98
.0

)/
(9

1.
0|

94
.0

)
50

.0
/3

5.
7

70
/5

9
(6

90
2|

19
60

0)
/(

67
16

|1
96

00
)

(9
6/

13
4/

60
)/

(8
7/

12
6/

52
)

(8
5.

3/
61

.1
/4

8.
5)

/(
52

.2
/3

6.
1/

65
.2

)
(1

09
48

/3
10

09
)/

(1
00

48
/2

78
71

)
1.

6/
1.

4
20

.0
/1

0.
0

6.
3/

5.
9

24
A

ud
io

_V
is

ul
liz

er
33

2/
27

6
49

/4
9

(9
5.

0|
99

.0
)/

(9
1.

0|
93

.0
)

32
.8

/1
9.

2
23

/2
1

(2
61

3|
72

00
)/

(2
47

4|
72

00
)

(4
/1

2/
18

)/
(4

/9
/1

9)
(6

.0
/2

.0
/0

.8
)/

(2
.9

/1
.3

/0
.2

)
(4

01
2/

11
98

2)
/(

47
93

/1
38

11
)

1.
7/

1.
9

20
.0

/1
0.

0
1.

0/
1.

9
25

C
G

C
_V

id
eo

_F
or

m
at

_P
ar

se
r_

an
d_

V
ie

w
er

14
78

6/
13

98
7

40
78

/4
07

8
(9

3.
0|

99
.0

)/
(9

4.
0|

98
.0

)
46

.6
/5

6.
6

49
/4

8
(4

33
1|

12
00

0)
/(

41
45

|1
20

00
)

(7
2/

13
0/

22
)/

(6
9/

13
2/

13
)

(4
9.

4/
27

.3
/N

/A
)/

(7
7.

2/
40

.3
/N

/A
)

(1
00

98
/2

87
81

)/
(9

57
6/

27
98

8)
2.

4/
2.

3
10

.0
/0

.0
1.

0/
2.

5
26

Si
m

pl
e_

St
ac

k_
M

ac
hi

ne
12

8/
73

20
/2

0
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
84

.4
/7

2.
6

7/
8

(1
30

8|
36

00
)/

(1
30

6|
36

00
)

(2
/4

/8
)/

(2
/4

/7
)

(1
2.

5/
6.

2/
N

/A
)/

(3
.5

/1
.8

/N
/A

)
(3

07
9/

90
87

)/
(3

40
6/

98
01

)
8.

2/
3.

5
30

.0
/2

0.
0

18
.3

/1
2.

2
27

ba
si

c_
m

es
sa

gi
ng

43
21

/2
33

1
12

95
/1

29
5

(9
5.

0|
97

.0
)/

(9
4.

0|
98

.0
)

70
.0

/4
4.

4
24

/2
3

(3
30

8|
96

00
)/

(3
21

7|
96

00
)

(1
8/

32
/2

8)
/(

26
/4

3/
25

)
(6

0.
5/

34
.0

/5
9.

1)
/(

36
.3

/2
2.

0/
39

.5
)

(1
43

12
/3

92
68

)/
(1

35
35

/3
89

81
)

4.
1/

4.
1

70
.0

/2
0.

0
1.

6/
2.

6
28

ex
pr

es
si

on
_d

at
ab

as
e

76
5/

98
1

43
/4

3
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
94

.4
/9

5.
6

25
/2

7
(2

51
9|

72
00

)/
(2

46
8|

72
00

)
(6

/1
2/

14
)/

(7
/1

2/
16

)
(1

5.
6/

7.
8/

3.
5)

/(
12

.6
/7

.4
/3

.3
)

(7
86

6/
21

78
6)

/(
68

70
/1

97
76

)
6.

2/
5.

0
40

.0
/4

0.
0

16
.4

/2
6.

8
29

M
at

ch
m

ak
er

27
61

/3
28

1
16

/1
6

(9
2.

0|
95

.0
)/

(9
5.

0|
98

.0
)

99
.4

/9
9.

5
48

/5
2

(4
95

9|
14

40
0)

/(
48

27
|1

44
00

)
(2

0/
31

/1
8)

/(
26

/5
2/

19
)

(1
.2

/0
.8

/1
.3

)/
(0

.9
/0

.5
/1

.3
)

(1
19

73
/3

41
55

)/
(1

06
45

/3
15

21
)

7.
2/

6.
6

80
.0

/9
0.

0
39

.1
/1

7.
3

30
lib

tif
f(

tif
fc

p)
v4

.0
.1

0
35

36
/2

44
8

59
/5

9
(9

4.
0|

99
.0

)/
(9

5.
0|

98
.0

)
98

.3
/9

7.
6

9/
10

(1
79

4|
52

00
)/

(1
75

4|
52

00
)

(6
/8

/1
7)

/(
5/

7/
18

)
(1

40
.7

/1
05

.5
/N

/A
)/

(5
5.

2/
39

.4
/N

/A
)

(9
15

5/
25

84
5)

/(
80

16
/2

23
12

)
5.

6/
4.

9
70

.0
/5

0.
0

5.
2/

9.
5

31
jh

ea
d

v3
.0

3
51

1/
32

0
63

/6
3

(9
1.

0|
94

.0
)/

(9
3.

0|
97

.0
)

87
.7

/8
0.

3
6/

5
(1

03
4|

30
00

)/
(1

03
0|

30
00

)
(2

/2
/1

2)
/(

2/
2/

11
)

(4
9.

8/
49

.8
/1

.2
)/

(2
5.

1/
25

.1
/2

.5
)

(5
45

4/
15

66
5)

/(
49

86
/1

46
51

)
6.

1/
5.

8
70

.0
/6

0.
0

9.
2/

9.
2

32
xp

df
(p

df
to

pn
g)

v4
.0

1.
01

33
31

7/
32

59
0

49
7/

49
7

(9
4.

0|
96

.0
)/

(9
5.

0|
98

.0
)

98
.5

/9
8.

5
35

/3
4

(2
23

50
|6

40
00

)/
(2

33
08

|6
78

77
)

(4
/8

/3
2)

/(
5/

9/
34

)
(3

48
.3

/1
74

.1
/N

/A
)/

(6
93

.2
/3

85
.1

/N
/A

)
(5

01
13

/1
44

63
4)

/(
49

46
5/

14
11

23
)

4.
0/

2.
9

90
.0

/9
0.

0
10

.7
/6

.2
33

lo
de

pn
g

v2
01

90
92

8
72

8/
67

9
10

2/
10

2
(9

5.
0|

99
.0

)/
(9

5.
0|

97
.0

)
86

.0
/8

5.
0

7/
8

(1
78

6|
52

00
)/

(1
85

6|
52

00
)

(1
5/

21
/1

4)
/(

12
/1

8/
17

)
(7

.9
/5

.7
/N

/A
)/

(9
.1

/6
.1

/N
/A

)
(9

49
8/

26
13

1)
/(

93
75

/2
56

12
)

5.
0/

4.
9

70
.0

/8
0.

0
12

.3
/3

.5
34

cr
as

hm
ai

lv
1.

6
77

6/
58

9
21

6/
21

6
(9

4.
0|

98
.0

)/
(9

3.
0|

96
.0

)
72

.2
/6

3.
3

4/
5

(1
20

4|
36

00
)/

(1
20

7|
36

00
)

(8
/1

5/
12

)/
(4

/7
/1

3)
(7

0.
0/

37
.3

/4
6.

7)
/(

93
.3

/5
3.

3/
28

.7
)

(2
25

3/
61

72
)/

(1
83

6/
54

12
)

1.
7/

1.
5

70
.0

/6
0.

0
4.

8/
3.

6
35

N
et

pe
rf

v2
.6

.0
17

98
2/

12
76

4
82

20
/8

22
0

(9
5.

0|
97

.0
)/

(9
2.

0|
95

.0
)

54
.3

/3
5.

6
4/

3
(1

30
7|

36
00

)/
(1

21
5|

36
00

)
(3

/4
/1

0)
/(

3/
4/

11
)

(3
25

4.
0/

24
40

.5
/9

76
.2

)/
(1

51
4.

7/
11

36
.0

/4
13

.1
)

(1
64

8/
47

61
)/

(1
80

7/
54

12
)

1.
3/

1.
5

50
.0

/4
0.

0
17

.0
/2

0.
0

36
pd

fr
es

ur
re

ct
v0

.1
5

23
45

5/
20

59
7

10
23

/1
02

3
(9

5.
0|

99
.0

)/
(9

4.
0|

98
.0

)
95

.6
/9

5.
0

24
/2

4
(8

58
0|

24
00

0)
/(

85
98

|2
40

00
)

(1
2/

13
/2

7)
/(

10
/1

8/
23

)
(3

42
.7

/3
16

.4
/N

/A
)/

(5
13

.6
/2

85
.3

/N
/A

)
(1

89
93

/5
43

12
)/

(2
34

67
/6

54
12

)
3.

0/
2.

9
80

.0
/8

0.
0

27
.0

/2
7.

3
37

si
pp

v3
.3

40
98

/3
98

1
22

08
/2

20
8

(9
5.

0|
97

.0
)/

(9
1.

0|
94

.0
)

46
.1

/4
4.

5
6/

5
(1

23
8|

36
00

)/
(1

25
4|

36
00

)
(3

/7
/9

)/
(2

/3
/7

)
(6

30
.0

/2
70

.0
/2

10
.0

)/
(8

86
.5

/5
91

.0
/2

53
.3

)
(1

74
4/

51
21

)/
(1

38
3/

41
23

)
1.

4/
1.

1
50

.0
/4

0.
0

7.
5/

7.
8

38
sc

v7
.1

6
23

81
/2

09
8

10
29

/1
02

9
(9

3.
0|

96
.0

)/
(9

4.
0|

99
.0

)
56

.8
/5

1.
0

6/
5

(1
25

0|
36

00
)/

(1
28

6|
36

00
)

(4
/6

/1
2)

/(
4/

6/
11

)
(3

38
.0

/2
25

.3
/1

12
.7

)/
(2

67
.3

/1
78

.2
/9

7.
2)

(1
66

1/
47

81
)/

(1
66

2/
46

51
)

1.
3/

1.
3

60
.0

/5
0.

0
4.

8/
4.

4
39

ja
sp

er
v2

.0
.1

4
57

62
/4

76
1

76
4/

76
4

(9
5.

0|
99

.0
)/

(9
6.

0|
98

.0
)

86
.7

/8
4.

0
8/

9
(3

26
8|

96
00

)/
(3

35
3|

96
00

)
(4

/7
/1

3)
/(

5/
7/

12
)

(3
97

.2
/2

27
.0

/8
9.

9)
/(

34
6.

5/
24

7.
5/

19
.4

)
(7

24
2/

20
18

2)
/(

71
55

/1
98

71
)

3.
0/

2.
2

40
.0

/1
0.

0
3.

9/
4.

7
40

lis
ts

w
f(

lib
m

in
g

v0
.4

.7
)

34
78

/2
66

8
33

/3
3

(9
3.

0|
96

.0
)/

(9
4.

0|
99

.0
)

99
.1

/9
8.

8
8/

7
(2

43
2|

72
00

)/
(2

51
1|

72
00

)
(5

/7
/1

4)
/(

4/
6/

15
)

(4
4.

3/
31

.6
/N

/A
)/

(8
5.

8/
57

.2
/N

/A
)

(6
95

8/
19

88
8)

/(
65

18
/1

78
72

)
3.

4/
3.

0
30

.0
/2

0.
0

2.
2/

2.
3

41
G

ra
ph

ic
sM

ag
ic

k
v1

.3
.2

6
51

78
/4

92
1

68
/6

8
(9

3.
0|

97
.0

)/
(9

5.
0|

98
.0

)
98

.7
/9

8.
6

8/
9

(3
29

9|
96

00
)/

(3
38

8|
96

00
)

(5
/7

/2
1)

/(
4/

6/
19

)
(2

84
.8

/2
03

.4
/N

/A
)/

(5
19

.3
/3

46
.2

/N
/A

)
(7

28
6/

21
73

1)
/(

79
19

/2
21

23
)

2.
5/

2.
5

40
.0

/2
0.

0
1.

6/
1.

5

nu
m

1/
nu

m
2:

fo
rc

as
e

N
o.

n,
nu

m
1

is
da

ta
va

lu
e

of
cr

as
hi

ng
in

pu
t1

;n
um

2
is

da
ta

va
lu

e
of

cr
as

hi
ng

in
pu

t2
;

(p
er

ce
nt

1|
pe

rc
en

t 2
):

fo
rt

he
fit

tin
g

ra
te

of
ca

se
N

o.
n,

pe
rc

en
t 1

is
av

er
ag

e
ra

te
;

pe
rc

en
t 2

is
m

ax
im

um
ra

te
;

C
G

C
pr

og
ra

m
:c

as
e

N
o.

1
to

ca
se

N
o.

29
;

R
ea

l-
w

or
ld

pr
og

ra
m

:c
as

e
N

o.
30

to
ca

se
N

o.
41

;

	Introduction
	Attention Mechanism for Interpretability
	Test Case Reduction
	Motivating Example
	Our Insight

	System Design
	Input and Output Embedding
	Dataset Augmentation
	Network Structure
	Relevance Computation
	Reduction

	Evaluation
	Experimental Setting
	Overall Results
	Accuracy and Generality
	Comparison on Dataset Augmentation and Interpretability

	Related Work
	Test Case Reduction
	Interpretability of Neural Networks

	Conclusion
	Case Studies

