
Game of Hide-and-Seek: Exposing Hidden Interfaces in
Embedded Web Applications of IoT Devices

Wei Xie, Jiongyi Chen(B) , Zhenhua Wang, Chao Feng,
Enze Wang, Yifei Gao, Baosheng Wang, Kai Lu

{xiewei,chenjiongyi,wzh15,chaofeng,wangenze18,gaoyf,bswang,kailu}@nudt.edu.cn
National University of Defense Technology

ABSTRACT
Recent years have seen increased attacks targeting embedded web
applications of IoT devices. An important target of such attacks is
the hidden interface of embedded web applications, which employs
no protection but exposes security-critical actions and sensitive
information to illegitimate users. With the severity and the perva-
siveness of this issue, it is crucial to identify the vulnerable hidden
interfaces, shed light on best practices and raise public awareness.

In this paper, we present IoTScope, a new approach that auto-
matically exposes hidden web interfaces of IoT devices. Specifically,
IoTScope constructs probing requests through firmware analysis to
test physical devices, and narrows down the scope of identification
by filtering out irrelevant requests and interfaces through differ-
ential analysis. It pinpoints hidden interfaces by attaching various
device-setting parameters in the probing requests and matching
keywords of sensitive information. Evaluated on 17 IoT devices,
IoTScope successfully identified 44 vulnerabilities, including 43
previously unknown ones. IoTScope also demonstrates surprising
efficiency: on average, it delivered 151438 probing requests, taking
only 47 minutes on each target device.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Vulnerability detection; authentication; web security; Internet of
Things

ACM Reference Format:
Wei Xie, Jiongyi Chen, Zhenhua Wang, Chao Feng, Enze Wang, Yifei Gao,
Baosheng Wang, Kai Lu. 2022. Game of Hide-and-Seek: Exposing Hidden
Interfaces in Embedded Web Applications of IoT Devices. In Proceedings of
the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/34
85447.3512213

(B): Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512213

1 INTRODUCTION
With the rapid evolution of Internet-of-Things technologies, recent
years have seen broad adoption of IoT devices and applications[22].
Embedded web applications (EWAs for short) play an essential
role in managing and configuring vast amounts of devices. They
provide a universal and convenient way to interact with end-users.
Nevertheless, although the EWAs are increasingly deployed, the
protection of EWAs is lagged[1, 3, 26]. Embedded developers do
not raise enough awareness about security and do not also follow
best practices during development. Consequently, many EWAs are
made available without protection and can be easily exploited by
unauthenticated attackers.
Hidden interface of IoT device. The most feasible way to attack
EWAs is probably through hidden interfaces. A hidden interface
allows unauthenticated users to remotely access it without any per-
mission. In reality, developers intentionally or accidentally leave
hidden interfaces, which often expose sensitive information like re-
vealing admin passwords or security-critical operations like chang-
ing network settings. As an example, CVE-2019-14984 [12] reports
that some smart home control devices allow unauthenticated at-
tackers to run system commands by accessing an undocumented
web interface “exec.cgi”. Furthermore, a hidden interface itself
is not only vulnerable but also acts as a front door to the exploita-
tion of other vulnerabilities. For instance, in the case of CVE-2018-
11510 [11], there exists a command injection in the web interface
“/portal/apis/aggrecate_js.cgi” of an IoT device. Exploiting
this vulnerability requires the presence of a hidden interface to
bypass authentication. Those cases are only the tip of the iceberg.
According to the statistics from OWASP [25], broken access control
has moved up from the fifth position to the category with the most
serious web application security risk.

Previous studies of identifying vulnerabilities in IoT devices
have been traditionally focused on memory corruptions [6, 14, 40],
taint-style vulnerabilities [8, 39], and domain-specific vulnerability
types[18, 31]. On the other hand, automatic detection techniques
of broken access control focus on particular targets such as the
cloud backends of mobile services [2, 43–45] and visible interfaces
of general web applications [15, 27, 33]. Given that there lacks a
tool applicable to exposing hidden interfaces in IoT devices, the
worrisome situation of broken access control is apparently under-
estimated in the IoT domain.
Our approach. This paper introduces IoTScope, a new approach
that automatically exposes hidden interfaces in IoT devices. In par-
ticular, we extract filenames and pathnames through static firmware
analysis to construct probing requests. Each probing request is sent

https://doi.org/10.1145/3485447.3512213
https://doi.org/10.1145/3485447.3512213
https://doi.org/10.1145/3485447.3512213

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie and Chen, et al.

out twice (with a minor difference), and the similarity of responses
is compared to judge whether they correspond to an invalid request.
Based on that, we filter out invalid requests and narrow down the
scope of identification with the aim of keeping unprotected inter-
faces. Finally, IoTScope pinpoints two types of hidden interfaces: (1)
for the hidden interfaces that allow manipulation of device settings,
we extract various device-setting parameters from the frontend of
embedded web services; (2) for the hidden interfaces that expose
sensitive information, we match the content on the interfaces with
a dictionary of keywords extracted from NVRAM parameters and
configuration files.

We evaluated IoTScope by testing 17 devices from 11 vendors.
The devices belong to 8 different device types. To our surprise,
IoTScope identified 44 vulnerabilities, including 43 of them that
were previously unknown. Those identified vulnerabilities could
lead to severe consequences like remote code execution, exposure
of security-critical actions, sensitive information disclosure, etc. We
reported all the vulnerabilities to the corresponding vendors. They
confirmed the vulnerabilities and assigned 8 CVE IDs. In the experi-
ments, IoTScope demonstrated impressive performance: the testing
time spent on each device is from 101 seconds to 3.59 hours, with an
average of 47 minutes per device. With a full implementation and a
comprehensive evaluation, IoTScope makes the first step towards
automated and quantitative measurement for the identification of
hidden interfaces in IoT devices.

The main contributions of this paper are summarized as follows:
• New approach. We design and implement IoTScope1,
a new tool that can automatically expose hidden inter-
faces in embedded web applications of IoT devices. With
static firmware analysis to enumerate all possible interfaces
and narrow down the scope of identification step-by-step,
IoTScope can pinpoint two common types of vulnerable
hidden interfaces, namely hidden device-setting interfaces
and hidden information-disclosure interfaces.

• Real-world impact.We evaluated IoTScope with 17 real-
world IoT devices. To our surprise, it successfully identified
44 vulnerabilities, including 43 of them that were previously
unknown. We responsibly reported all the identified vulnera-
bilities to “cve. mitre. org” and the corresponding vendors,
and received 8 CVE IDs.

We organize the rest of the paper as follows: Section 2 provides
the background about embedded web applications and hidden in-
terfaces, as well as the technical challenges in developing the tool.
Section 3 details the design of IoTScope. Section 4 gives the evalu-
ation of IoTScope. Section 5 reviews related works, and Section 6
gives the conclusion.

2 BACKGROUND AND MOTIVATION
2.1 Embedded Web Applications
Embedded web applications are widely adopted in IoT devices.
They typically serve as the administration panel for the easy con-
figuration of embedded devices. EWAs are different from tradi-
tional web applications. Traditional web servers like Apache, IIS,
and Nginx are relatively heavy and tailored for high performance

1IoTScope would be open-sourced via Github after the conference.

Open Interfaces

Protected
Interfaces

Embedded Web Applications

Unprotected Interfaces

Hidden Interfaces

Device-Setting
Interfaces

Info.-Disclosure
Interfaces

Figure 1: Relationship of Interfaces in EWA

and quick response. On the contrary, embedded web servers like
mini_httpd [23], boa [4] and lighttpd [21] that host EWAs, are
lightweight and open-sourced for easy development and quick cus-
tomization. As a result, unlike traditional web applications hosting
web files like .PHP, .ASP and .JSP, many EWAs host binary-based
CGI files. Without semantics at the source code level, it is more
challenging to analyze CGI files than those scripts of traditional web
applications. Even worse, cross-architectural analysis [17, 28, 36]
is often involved, as a large number of IoT devices are based on
Reduced Instruction Set Computing (RISC) architectures like ARM
and MIPS.

2.2 Hidden Interfaces of Embedded Web
Applications

EWAs are protected by authentication and authorization. Unfortu-
nately, lacking security awareness, embedded developers do not
always follow best practices and intentionally or accidentally leave
hidden interfaces. Some EWA interfaces do not require login cre-
dentials, allowing unauthenticated users to access security-critical
actions or sensitive information. We call them hidden interfaces, as
they are different from: (1) open interfaces such as login/welcome
pages and resource files that are directly exposed to unauthenti-
cated users; (2) protected interfaces that can only be accessed after
authentication or authorization. The relationship of those interfaces
is shown in Figure 1. The hidden interfaces contain vulnerabilities
inadvertently caused by developers or backdoors left on purpose.
Given that an EWA interface is mainly designed either for config-
uring or displaying settings of a device, there are mainly two types
of vulnerabilities:

• Manipulation of device setting: If a hidden interface al-
lows configuration of device settings, it leads to unautho-
rized manipulation, e.g., manipulating the IP address of a
DNS server by unauthenticated attackers.

• Information disclosure: If a hidden interface is designed
to display device settings to users, an information disclosure
vulnerability could be caused, for example, leaking a user’s
login password to unauthenticated attackers.

In practice, we believe hidden interfaces would be the headmost
attack surface of IoT devices due to three reasons. First, accessing
the hidden interfaces or triggering vulnerabilities on them does

Game of Hide-and-Seek: Exposing Hidden Interfaces in Embedded Web Applications of IoT Devices WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Interface Enumeration
Probing Request

Delivery

Identification of Device-
Setting Interfaces

Invalid Interfaces
& Proected Interfaces

Probing
Requests

010101010101010101010101

Firmware Image

Requests & Responses

Identification of
Unprotected InterfacesIdentification of

Information-Disclosure
Interfaces

Device-Setting Interfaces

Information-Disclosure
Interfaces

Unprotected
Interfaces

Interaction

IoT Device

Discard

Frontend
Code

Frontend
Code

NVRAM Params

& Config Files

parameters

keywords

Figure 2: Workflow of IoTScope

not require any authentication and authorization. Second, the gain
is high for attackers. Once abused, the hidden interfaces expose
sensitive information or allow security-critical actions. Third, given
that web servers often listen on HTTP/HTTPS ports, accessing
hidden web interfaces would not be prevented by network layer
firewalls [35].

2.3 Challenges in Exposing Hidden Interfaces
Given the stealthiness and severe consequences of hidden interfaces
of IoT, it is imperative to discover them automatically and assess
their impact in the real world. Unfortunately, we found that there
is no existing solution that serves this purpose. To this aim, our
approach first enumerates possible interfaces, narrows down the
scope step by step and eventually identify hidden interfaces, which
brings three specific challenges:

• Challenge 1: enumerating possible interfaces. Web in-
terfaces are presented in different forms and reside in various
locations, making it difficult to enumerate all possible inter-
faces. On the one hand, they have different extensions of
filename like .PHP, .ASP, .JSP, and .CGI. Some of the inter-
faces are scripts, while the others are binaries. On the other
hand, they could be either independent files or functions of
servers. For instance, FIRMADYNE [5] failed to identify the vul-
nerability CVE-2017-5521 [10], as the tool only enumerates
independent files in the “www” directory. But the vulnerable
interface is presented as a function in the binary executable
“httpd”.

• Challenge 2: identifying unprotected interfaces. Once
the probing requests are sent out, we collect a bunch of un-
confirmed request-response pairs. The next step is to first
identify valid interfaces and then identify unprotected inter-
faces among them. Typically, a web server should reply with
a 404 status code to the client when the HTTP request speci-
fies a nonexistent URL. Unfortunately, embedded developers
do not always follow the standards of the HTTP protocol. As
a result, EWAs would answer the client with responses hav-
ing various HTTP status codes, if the requests access valid
interfaces and unprotected interfaces. For example, some
EWAs reply with the 400 status code to indicate a general

bad request; Some EWAs answer any request with the status
code 200, then details the error in the response body. Thus,
we need to handle the mess of informal programming con-
ventions and automatically identify unprotected interfaces
without leveraging the semantics of responses.

• Challenge 3: identifying hidden interfaces. Unlike the
triggering of memory corruptions that often lead to program
crashes, there is no indicator to confirm whether a valid
interface is a hidden interface. For information disclosure,
some hidden interfaces display security questions related
to user privacy or leak login passwords to unauthenticated
users, resulting in authentication bypass attacks. Regarding
the vulnerability of manipulation of device settings, hidden
interfaces could allow unauthenticated attackers to change
the DNS settings of the device, or allow the manipulation
of router’s Wi-Fi settings, causing denial-of-service attacks
to wireless users. The technical challenge lies in how to sys-
tematically identify the hidden interfaces given the diverse
forms and behaviors.

3 DESIGN
The architecture of IoTScope is shown in Figure 2. The input is an
IoT device and its firmware image. IoTScope first extracts filenames
and pathnames by statically analyzing firmware, and assembles
them to construct HTTP probing requests. The probing requests are
then used to interact with the physical IoT device or an emulator
that hosts the firmware. Then IoTScope collects the requests and
responses in order to filter out invalid interfaces and protected
interfaces that are not of our interest. In the end, the identification
of two types of hidden interfaces is conducted respectively on the
remaining unprotected interfaces. The outputs of the system are
the vulnerable hidden interfaces within the firmware.

3.1 Enumerating Interfaces
As illustrated in Figure 3, IoTScope extracts structural strings of
pathnames and filenames from firmware images, and aggressively
concatenates pathnames and filenames to construct syntactically
valid URLs as probing requests.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie and Chen, et al.

010101010101010101010101

Filesystem Root
Directory

Web Related Files

Binary Web Server

File_List
set.cgi, test.asp,
wifi.cgi, login.cgi,
backdoor.php

Path_List
/help/, /image/,
/cig-bin/, /noauth/,
/js/

URL_List
/help/set.cgi, /help/test.cgi, /help/wifi.cgi,

/help/login.cgi, /help/backdoor.php,
/cgi-bin/test.asp, /noauth/set.cgi,
/noauth/wifi.cgi, /js/backdoor.php

… …… …

Firmware Image

Figure 3: Illustration of Interface Enumeration

First of all, we gather searchable information and use regular
expressions to enumerate filenames. To make the string data such
as filenames of executables and text information within executables
(e.g., function names, debugging symbols, and printable strings)
consistent and searchable, we decompress the firmware image and
repack the root directory of the entire firmware filesystem into a
single file. After that, we extract all the strings from the single file
and use regular expressions to extract all possible filenames of web
interfaces, namely the strings ended with .cgi, .php, .asp, .xml,
.htm and .html.

Next, we repack web-related scripts and executables of web
servers into a single file, and search for possible pathnames using
regular expressions. By repacking only a subset of the whole filesys-
tem, we can exclude the paths that are irrelevant to web services
(e.g., ‘‘/etc/’’ and ‘‘/proc/’’). Finally, by concatenating file-
names and pathnames according to a customizable policy, IoTScope
produces a list of probing requests.

Note that even if the web server constructs a probing request
at runtime, the sub-strings of the probing requests are already
contained in the executable. Thus, our approach can still reconstruct
the URL that can only be constructed dynamically. Suppose a web
server constructs a specific URL at runtime by concatenating three
paths “/cgi-bin/”, “/image/”, and “/auth/”, and there is no single
path “/cgi-bin/image/auth/” in the firmware. In that case, our
customizable policy allows users to increase the number of probing
requests by concatenating three paths as one single path or treat
one sub-string along (i.e., “/cgi-bin/”, “/image/”, or “/auth/”) as
the prefix of filenames.

3.2 Delivering Probing Requests
This component is responsible for sending and receiving HTTP
packets to/from a target device/emulator. Our approach does not
require the instrumentation of the target firmware to collect exe-
cution feedback. Instead, it only observes feedback from response
messages. As a result, the target can be an emulator that hosts the
firmware or a physical device. Furthermore, IoTScope runs a single

Response
Comparison of Twin-

Requests
Clustering

Unprotected Interfaces

Minority?
(Valid

Interface)

Different Resp.?
(Protected
Interface)

Majority?
(Invalid Interface)

Discard

Figure 4: Identification of Unprotected Interface

thread to avoid concurrency issues where the following request
would not be sent out until the reception of the previous response.

IoTScope sends each probing request twice. The first request
carries a certificate in the authenticated HTTP head, while the
second request does not carry a certificate. We call them twin-
requests. The twin-requests with their corresponding responses
are all fed to the next component.Since we own the tested device,
there is no need to extract the default certificate from firmware.
Instead, we can set it by ourselves and sniff its encoded version
from a web proxy like Burpsuit. Typically, the certificate would be
sent in the header of an authenticated HTTP request, either in the
COOKIE field or the AUTHENTICATION field. We only need to
set and capture it once when testing each device.

3.3 Identifying Unprotected Interfaces
Figure 4 illustrates the design of this component. At first, it identifies
and filters out protected interfaces that require user authentication
by observing the difference of the twin-requests’ response. A pair
of twin-requests (with/without a certificate) targeting the same
protected interface would result in two different responses. The
request with a certificate would get an indicator of successful access.
The other request that does not carry a certificate would get a
warning of unauthenticated or unauthorized access. However, when
a pair of twin-requests are both invalid, identical responses are
replied to. For example, both of the responses indicate the targeted
URL does not exist.

To further filter out invalid probing requests, we cluster the re-
maining responses into different groups based on the content of
response body. The responses of invalid requests are the major-
ity and can be clustered into several groups, corresponding to the
several errors handling cases in the webserver. The outliers are un-
protected interfaces, namely open interfaces and hidden interfaces.

The detailed clustering algorithm is shown in Algorithm 1. It is
lightweight and does not require a pre-defined number of groups.
We define the similarity of two elements 𝑎 and𝑏, namely the content
of two responses as: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎, 𝑏) = 2 ∗𝑀𝑎𝑏/(𝐿𝑎 + 𝐿𝑏), where
𝐿𝑎 and 𝐿𝑏 are the lengths of the two elements. 𝑀𝑎𝑏 is the length
of common characters that are shared by 𝑎 and 𝑏. By definition,

Game of Hide-and-Seek: Exposing Hidden Interfaces in Embedded Web Applications of IoT Devices WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

this similarity function returns a value between 0 to 1. Similar
responses are often highly-structured and share a large portion of
common string characters. So similar strings tend to gather in the
sample space. Using this similarity measurement can effectively
differentiate responses of common invalid requests and responses
of scarce valid requests. Given the large gap between the amount
of invalid requests and the amount of valid requests, the value of
the threshold is relatively insensitive to the clustering results.

Algorithm 1: Response Clustering Algorithm
1 for 𝑖 in [1, 𝑁] do
2 if 𝐸𝑖 not in any group then
3 create 𝐺𝑅𝑂𝑈𝑃𝑖 ;
4 put 𝐸𝑖 in 𝐺𝑅𝑂𝑈𝑃𝑖 ;
5 for 𝑗 in [𝑖 + 1, 𝑁] do
6 if 𝐸 𝑗 not in any group then
7 compute 𝑆 = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐸𝑖 , 𝐸 𝑗)
8 if 𝑆 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
9 put 𝐸 𝑗 in 𝐺𝑅𝑂𝑈𝑃𝑖 ;

After clustering, a response group whose size is significantly
larger than others would be marked as “majority” and be treated as
responses of invalid requests. The intuition is that most probing re-
quests are invalid, and the amount of requests to hidden interfaces
and open interfaces is relatively small. For example, to identify the
hidden interface with URL suffix “/noauth/set-dns.cgi”, hun-
dreds of candidate directories would be enumerated to generate
probing requests. However, only one of the candidates, namely
“/noauth/”, would result in a response answered by the function
“set-dns_cgi” of the EWA server. Other requests would be an-
swered by the function “load-URL_cgi“, which returns error mes-
sages like “/XXX/set-dns.cgi does not exist”. Those responses
with error information would be clustered as a large group and be
discarded.

3.4 Identifying Hidden Interfaces
Once the protected interfaces and invalid interfaces are discarded,
the goal of this step is to identify hidden interfaces that pose threats
to users. As described in Section 2, there are two types of hidden
interface: the hidden interface that allows manipulation of device
setting, and the other type of hidden interface that discloses sensi-
tive information about the IoT device.
Identification of hidden device-setting interfaces. IoTScope
probes each unprotected interface by adding parameters extracted
from firmware. As the backend server exposes functionalities to
users through frontend code, nearly all of the device-setting param-
eters are hardcoded in the frontend. To extract the parameters, we
scan the frontend code in the firmware images. If the communica-
tion with the backend server is based on AJAX, we directly extract
parameters in the “data” field of AJAX requests and the arguments
of the “$.post()” function. If the parameters are submitted to the
backend using HTML forms, we use regular expressions to extract
the field of action attribute and input label. The extracted key-value
pairs are stored in a database.

Table 1: Evaluated Devices

Device ID Vendors Models Device Types Firmware Versions

1 Amcrest IP2M841 Camera V2.800.0000000.1.R
2 Asus 4G-AC55U 4G router 3.0.0.4.380_8102
3 D-link Dir-868L Wi-Fi router 2.03 B1
4 D-Link DIR-412 Wi-Fi router A1-1.14WW
5 D-Link DIR-816 Wi-Fi router A1 1.06
6 D-Link DAP-1320 Repeater A2-V1.21
7 H3C MAGIC Wi-Fi router V100R006
8 Mercury MIPC372-4 Camera 1.0.1
9 Mercury MNVR408 Video recorder 1.0.9
10 Netcore G1 4G router V3.0.4.156
11 Netgear PLW1000 Powerline adapter 1.0.1.6
12 Netgear W104 Repeater 1.0.4.13
13 Netgear WNDR4000 Wi-Fi router V1.0.2.2_9.1.8468
14 Qihoo360 F5C Firewall router V3.1.1.65150
15 Tenda G103 GPON modem V1.0.0.5
16 TP-Link GP110 GPON modem 3.2.2.1 build 141119 Rel.74551n
17 Wavlink AC1200/A42 Wi-Fi router 1.27.6 (201806221623)

To automatically detect whether the probing request with a
certain parameter takes effect, we send out two requests: the first
request attaches a parameter that probably changes the device
setting; the subsequent request does not attach the parameter. If
the responses of the two requests are different, it indicates that the
request with the parameter takes effect on the device side, by either
changing the device setting or enquiring the status of the device.
As it is difficult to automatically determine whether the request is
about device setting or status enquiry, we manually analyze the
contents of the candidates’ responses as the last step.
Identification of hidden information-disclosure interfaces.
To identify information-disclosure interfaces, we build a dictionary
of keywords and match the content of the interfaces with the key-
words in our dictionary. The keywords come from the following
sources:

• NVRAM parameters. NVRAM values are a type of pa-
rameter that reside in devices rather than firmware. They
are often about device setting or user-specific sensitive in-
formation, like “lan_hwaddr”, “wlan1_psk_cipher_type”,
“wlan1_psk_pass_phrase”, etc. We collect NVRAM-related
keywords from NVRAM libraries like NVRAM faker [16]
that contains NVRAM parameters to facilitate firmware em-
ulation.

• Configuration files. We also extract key-value pairs
about web server configuration from configuration files
of the web servers such as “host.conf”, “lighttpd.conf”,
and “resolv.conf”. A set of configuration-related key-
words are extracted, like “root”, “username”, “groupname”,
“mod_auth”, “accesslog”, etc.

After deduplication, we build up a dictionary with over 50 key-
words. For the text of the response content, when at least two
keywords are matched in the dictionary, IoTScope reports it as an
information-disclosure interface. This procedure introduces false
positives, which is discussed in Section 4.

4 EVALUATION
IoTScope is evaluated on a PC with an Intel i7 processor and 16GB
RAM, running Ubuntu 20.04. All the testing targets are physical
IoT devices that we purchased. The target devices are representa-
tive, including 17 models from 11 well-known vendors, running
firmware with the latest version. Device types include cameras,

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie and Chen, et al.

Table 2: Confirmed Vulnerabilities with CVE-ID

Device ID CVE Zero-day Vulnerabilities Identified by DescriptionIoTScope Firmadyne

3 CVE-2019-7642
√

✓ Leak intranet users’ DNS query logs and login logs.

CVE-2019-17506
√

✓ ✓ Leak the router’s device information include username and password of the admin account.

4 CVE-2019-17511
√

✓ Access the router’s log file about the intranet network structure.

CVE-2019-17512
√

✓ Clear the router’s log file to erase attack traces.

5 CVE-2019-17507
√

✓ Access management pages of the router by removing redirection code.

6 CVE-2019-17505
√

✓ ✓ Leak the router’s Wi-Fi SSID and password.

13 CVE-2017-5521 ✓ Leak the admin account of the router to bypass authentication.

CVE-2019-17372
√

✓ Disable the router’s authentication protection of all pages.

14 CVE-2019-3404
√

✓ Query and modify a range of firewall configurations.

video recorders, GPON modems, powerline adapters, repeaters, 4G
routers, Wi-Fi routers, and firewall routers. IoTScope does not have
particular requirements on device types as long as they have web
interfaces with firmware available. Table 1 lists details of the target
devices.

4.1 Overall Results
Identified Vulnerabilities. With the help of IoTScope, we con-
firmed 44 vulnerabilities in total, including 43 previously unknown
vulnerabilities and 1 known vulnerability (the firmware has not
been updated for a long time). After responsibly reporting the
newly-found vulnerabilities to the corresponding vendors, 8 of
them have been confirmed and assigned CVE IDs. Table 2 gives a
brief description of each vulnerability having a CVE ID. Without
any protection, those vulnerabilities cause serious consequences,
ranging from obtaining device logs to completely controlling the
device.
Statistics and accuracy. As shown in Table 3, regarding the enu-
meration of possible interfaces, IoTScope on average extracts 117
paths and 326 files from each device’s firmware, producing an aver-
age of 62357 URLs as probing requests. After filtering the invalid
and protected interfaces, the rest of the probing requests are clus-
tered into groups. On average, we obtain 4, 7, and 15 response
clusters for one device and the results of vulnerability identification
remain the same, when setting the similarity threshold to 0.4, 0.6,
and 0.8, respectively. This is attributed to the fact that the clustering
algorithm can tolerate false negatives and false positives when the
threshold is set to different values. For example, if the threshold is
set to a large value, there are more requests belonging to the “minor-
ity”. The false positives can be eliminated during the identification
of hidden interfaces because the difference between the responses
of twin-requests (with/without parameters) is verified for hidden
device-setting interfaces and the contents of responses are matched
with the keywords for hidden information-disclosure interfaces,
which directly exclude invalid interfaces. The final results would
not be affected when the threshold is empirically set to a value
larger than 0.4.

The results of hidden interface identification are provided in
Table 4. IoTScope reports 20 cases of unauthenticated device setting
and 48 cases of sensitive information disclosure. Nevertheless, after
manual triage, we confirmed that there are 44 vulnerable interfaces
in total. The false positives occur due to the following reasons:
(1) for device-setting interfaces, the difference in the responses

Table 3: Statistics of Req. Generation and Res. Clustering

Device ID # Path # File # URL # Clusters

𝑡ℎ𝑑=0.4 𝑡ℎ𝑑=0.6 𝑡ℎ𝑑=0.8

1 540 240 129600 7 15 49
2 24 97 2328 1 1 1
3 598 1028 614744 7 14 37
4 201 433 87033 4 10 13
5 16 266 4256 2 6 19
6 43 164 7052 6 8 12
7 73 538 39274 4 5 9
8 22 86 1892 1 2 2
9 28 100 2800 3 5 5
10 104 470 48880 7 16 21
11 51 140 7140 6 11 42
12 32 640 20480 5 6 6
13 50 563 28150 2 6 16
14 121 471 56991 7 13 20
15 32 92 2944 2 2 3
16 15 93 1395 1 1 1
17 44 116 5104 4 5 7

Average 117 326 62357 4 7 15
Total 1994 5537 1060063 69 126 263

Table 4: Results of Hidden Interface Identification

Device ID Device-Setting
Interfaces Confirmed Info.-Disclosure

Interfaces Confirmed Vulnerability

1 0 0 4 2 2
2 0 0 0 0 0
3 0 0 15 13 13
4 3 2 5 4 6
5 0 0 2 1 1
6 0 0 2 1 1
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 3 3 5 5 8
11 0 0 4 1 1
12 0 0 1 1 1
13 11 2 5 3 5
14 3 3 3 2 5
15 0 0 0 0 0
16 0 0 0 0 0
17 0 0 2 1 1

Total 20 10 48 34 44

does not always indicate a successful device setting operation. It
could be enquiry of device status; (2) for information-disclosure
interfaces, the interface that matches the keywords does not always
leak sensitive information. It could be an open interface that allows
users to login with user account or reset the password.

Game of Hide-and-Seek: Exposing Hidden Interfaces in Embedded Web Applications of IoT Devices WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 5: Comparison of IoTScope and Firmadyne

Device ID # Path # File # URL # Vulnerability

IoTScope Firmadyne IoTScope Firmadyne IoTScope Firmadyne IoTScope Firmadyne

3 598 1 1028 175 614744 175 13 8
4 201 1 433 287 87033 287 6 0
6 43 1 164 73 7052 73 1 1
13 50 1 563 339 28150 339 5 0
15 32 1 92 82 2944 82 0 0
16 15 1 93 33 1395 33 0 0

Average 157 1 396 165 123553 165 4.2 1.5
Total 939 6 2373 989 741318 989 25 9

Table 6: Performance of IoTScope

Device ID Generation (s) Interaction (s) Filtering (s) Identification (s) Total (s)

IoTScope Firmadyne

1 4.23 12883.04 43.07 0.02 12930.36 -
2 9.86 144.59 0 0.01 154.46 -
3 9.39 5933.52 54.52 0.38 5997.81 861.54
4 5.63 1751.18 1.43 1.66 1759.9 626.14
5 1.19 274 6.6 0.03 281.82 -
6 1.26 3252.05 0.32 2.2 3255.83 362.24
7 3.39 3943.71 68.3 0.01 4015.41 -
8 1.71 166.98 0.08 0.01 168.78 -
9 2.22 288.32 0.14 0.02 290.7 -
10 2.22 4481.66 1.67 3.45 4489 -
11 7.94 837.57 7.23 3.31 856.05 -
12 2.68 1922.4 5.56 1.36 1932 -
13 2.99 947.92 352.71 18.23 1321.85 612.29
14 2.11 10030.24 12.39 7.12 10051.86 -
15 1.87 364.62 0.03 0.26 366.78 756.94
16 0.98 100.33 0.02 0.57 101.9 374.33
17 1.41 491.37 0.31 0.01 493.1 -

Average 3.59 2813 32.61 2.27 2848.76 598.91
Total 61.08 47813.5 554.38 38.65 48428.96 3593.48

4.2 Performance
Table 6 shows the time spent on each procedure for each device. The
least time to test a target is only 101 seconds, while the longest is
12,930 seconds (3.59 hours). It indicates that IoTScope is fast and ef-
ficient in testing IoT devices. On average, the procedures of request
generation, request filtering, and hidden interface identification
occupy 0.12%, 1.14%, and 0.08% of the total time cost, respectively.
However, the communication procedure, which includes sending
requests and waiting for responses, costs 98.66% of the testing time.
It is because the experiments were conducted with physical devices,
which were relatively slower than emulator-based testing regarding
processing requests and responses. Still, this brings the benefit that
we do not need to set up an emulation environment that is hard-to-
build [24, 29]. Also, the testing can be automatically resumed in the
presence of certain device states (e.g., reboot) and communication
states (i.e., the presence of tokens to maintain certain states). Al-
though IoTScope can be used in emulator-based testing, firmware
emulation is out of the scope of this research.
Comparison with Firmadyne. Firmadyne is a recent work that
can be used to identify web-related vulnerabilities in IoT devices.
Table 5 details the comparison between IoTScope and Firmadyne
[5], given the same set of target devices/firmware. The comparison
of performance is shown in Table 6. We also leverage FirmAE
[20], a recent work that fixes partial emulation issues of Firmadyne.
Unfortunately, as an emulator-based solution, Firmadyne (improved
by FirmAE) is less scalable and can only emulate and test 6 out
of 17 devices (35%). On average, IoTScope can cover 157 paths

Figure 5: Vulnerable Hidden Page of CVE-2017-5521

Figure 6: Vulnerable Hidden Page of CVE-2019-17512

for each device, while Firmadyne only deals with the root web
paths. IoTScope extracts 396 filenames, which is 2.4 times than
the number of filenames extracted by Firmadyne. The main reason
is that Firmadyne does not cover interfaces specified in functions
of executables. In the end, compared with totally 9 vulnerabilities
identified by Firmadyne, 25 vulnerabilities in total were reported
by IoTScope.

4.3 Case Studies
Case study 1: a series of netgear devices. CVE-2017-5521
[10] reported that an unauthenticated attacker could get the
admin password of a router by accessing the hidden interface
“passwordrecovered.cgi”, shown in Figure 5. this vulnerabil-
ity affected 13 Netgear device models. The hidden interface
“passwordrecovered.cgi” is not a web file but a function within
the binary web server. IoTScope discovered this vulnerability as

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Xie and Chen, et al.

it extracts strings inside binary web servers to generate probing
requests. The matched keywords are “admin”, “username”, and
“password”. In the experiments, we found that this vulnerability
affects the WNDR4000 device model, which is not included in the
report of CVE-2017-5521.
Case study 2: a D-Link router. We reported CVE-2019-17512
[13], a vulnerability affecting DIR-412 router of D-Link. IoTScope
extracted the parameters of page “log_clear.php”: {“act”: “clear”,
“logtype”: “this.logType”, “SERVICES”: “RUNTIME.LOG”}. The pa-
rameters reside in JavaScript code which sends Ajax requests. In
the first request, no content is received in the response as no pa-
rameters are attached. For the second time, when IoTScope sends
the request with the parameters, the router’s log file is cleared and
the information shown in Figure 6 is returned in the response.

4.4 Discussion
Scope of detection. IoTScope can only detect hidden interfaces
based on URLs. Although we believe that covers most cases, there
are also a few cases that can be triggered only by submitting par-
ticular HTTP parameters. This is related to other authorization
vulnerabilities like insecure direct object references. Besides, cer-
tain device states (e.g., reboot) and communication states (i.e., the
presence of tokens to maintain certain states) may have some im-
pacts on the testing of IoTScope. However, recent works have
addressed this issue [34, 37, 38], therefore, not the focus of this
paper.
Manual verification. Hidden interfaces are a type of logic vulner-
abilities. There lacks a unified criterion or indicator, as the vulnera-
bilities often lead to various behaviors or consequences. Therefore,
manual verification to triage the identification outcome is unavoid-
able. Luckily, after keywords matching or differential analysis of
responses, manual triage is simple and straightforward for the out-
come of IoTScope. Analysts only need to examine the reported
cases by taking a glance at the text information on the web inter-
faces and determine whether they are vulnerable. Moreover, since
the responses are clustered, we only need to verify one response
for each cluster.
Legality & ethicality. This research does not cause any legal
or ethical concerns. We have ownership of all devices that we
purchased and have responsibly reported all vulnerabilities to
“cve.mitre.org" and the corresponding vendors. We confirmed that
the vendors have already patched the vulnerabilities in the case
studies we detailed in this paper.

5 RELATEDWORK
In this section, we first review the related work on IoT device
testing. Then we discuss how prior works automatically detect
authentication and authorization problems.

5.1 IoT Device Testing
IoTScope is based on dynamic analysis. Recently there is a line
of research that leverage dynamic techniques to identify vulner-
abilities in IoT devices [5, 6, 19, 30, 32, 40]. For example, Chen et
al. [5] proposed FIRMADYNE, an automated framework to identify
memory corruptions and web-related vulnerabilities by emulating

firmware. With the help of this tool, the authors confirmed 14 pre-
viously unknown vulnerabilities that affected 69 firmware images.
A similar work is proposed by Costin et al. [9] which focuses on
emulating embedded web servers and identifies web-related vul-
nerabilities such as XSS and CSRF. However, those two tools are
not designed for identifying hidden interfaces and therefore do
not directly suit our case. Srivastava et al. [32] proposed Firmfuzz,
an automated device-independent emulation and dynamic anal-
ysis framework for Linux-based firmware images. It leverages a
greybox fuzzing approach coupled with static analysis and system
introspection. Zheng et al. [40] proposed FirmAFL, a high through-
put greybox fuzzer for IoT firmware. It leverages a novel technique
called augmented process emulation, which combines system-mode
emulation and user-mode emulation to improve the throughput of
fuzzing. Chen et al. [6] proposed IOTFUZZER, a framework that
aims at finding memory corruption vulnerabilities in IoT devices
through over-the-air fuzzing. It reuses program-specific logic to mu-
tate test cases to probe IoT devices. However, the mentioned work
only targets memory corruptions and is not suitable for exposing
hidden interfaces.

5.2 Detection of Broken Access Control
There are some related works that aim to detect broken access
control in cloud services [2, 7, 41–45]. Zhou et al. [41] and Chen et
al. [7] assessed the interactions among IoT apps, IoT devices and IoT
clouds. They systematically decomposed the process of IoT device
binding and exposed authentication and authorization problems
of the protocols through manual analysis. AutoForge [44] is a tool
that automatically forges valid request messages from mobile apps
to test whether the server side of an app has ensured the security of
user accounts with sufficient checks. AuthScope [45] automatically
executes a mobile app and pinpoints the vulnerable access control
implementations, particularly the vulnerable authorizations, in the
corresponding online service. It uses differential traffic analysis to
recognize the protocol fields and automatically substitute the fields
and observe the server response. Although the above works aim to
identify broken access control, they are only applicable to partic-
ular targets like mobile and IoT cloud backends. On the technical
side, Zuo et al. [42] proposed SmartGen, which leverages symbolic
execution to construct URLs from mobile apps, whereas IoTScope
constructs URLs from firmware with string analysis. Comparing
with tools [15, 27, 33] that analyze general web applications, they
focus on authentication and authorization problems of visible and
protected interfaces, rather than hidden interfaces.

6 CONCLUSION
In this paper, we have presented the first automated tool IoTScope
that exposes hidden interfaces in embedded web applications of
IoT devices. We designed a principled solution to achieve our goal,
by constructing probing requests through firmware analysis to test
physical devices, narrowing down the scope of identification by
filtering out irrelevant requests, and pinpointing two types of hid-
den interfaces. By conducting experiments in the real environment,
IoTScope successfully identified 44 vulnerabilities in 17 real-world
IoT devices.

Game of Hide-and-Seek: Exposing Hidden Interfaces in Embedded Web Applications of IoT Devices WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] [n. d.]. Smart Yet Flawed: IoT Device Vulnerabilities Explained. [On-

line]. Avaliable: https://www.trendmicro.com/vinfo/us/security/news/internet-
of-things/smart-yet-flawed-iot-device-vulnerabilities-explained.

[2] Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Pai Kasturi, Zhiqiang Lin,
and Brendan Saltaformaggio. 2019. The betrayal at cloud city: An empirical
analysis of cloud-based mobile backends. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 551–566.

[3] Anastasios Arampatzis. [n. d.]. Top 10 Vulnerabilities that Make IoT Devices In-
secure. [Online]. Avaliable: https://www.venafi.com/blog/top-10-vulnerabilities-
make-iot-devices-insecure.

[4] boa. 2005. Boa Webserver. [Online]. Avaliable: http://www.boa.org.
[5] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016. To-

wards Automated Dynamic Analysis for Linux-based Embedded Firmware. In
Network and Distributed System Security Symposium.

[6] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
Xiao Feng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In Network and Distributed System Security Symposium.

[7] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong, Qingchuan Zhao,
Menghan Sun, Zhiqiang Lin, Yinqian Zhang, and Kehuan Zhang. 2019. Your iots
are (not) mine: On the remote binding between iot devices and users. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 222–233.

[8] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and
Zhenkai Liang. 2018. DTaint: detecting the taint-style vulnerability in embed-
ded device firmware. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 430–441.

[9] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic firmware analysis at scale: a case study on embedded web interfaces. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security. 437–448.

[10] CVE-2017-5521. 2017. A vulnerability of password disclosure affecting
a series of Netgear devices. [Online]. Avaliable: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-5521.

[11] CVE-2018-11510. 2018. An unauthenticated RCE (Remote Code Execution) vul-
nerability affecting a NAS device. [Online]. Avaliable: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-11510.

[12] CVE-2019-14984. 2019. Some smart home central control units allow unauthenti-
cated attackers to run system commands by accessing an undocumented web in-
terface. [Online]. Avaliable: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2019-14984.

[13] CVE-2019-17512. 2019. A vulnerability affecting a router of D-Link. [Online].
Avaliable: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17512.

[14] Drew Davidson, Benjamin Moench, Somesh Jha, and Thomas Ristenpart. 2013.
FIE on firmware: finding vulnerabilities in embedded systems using symbolic
execution. In Usenix Conference on Security. 463–478.

[15] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The cookie hunter:
Automated black-box auditing for web authentication and authorization flaws. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1953–1970.

[16] NVRAM Faker. 2021. A Common Library of NVRAM Parameters for Firmware
Emulation. [Online]. Avaliable: https://github.com/zcutlip/nvram-faker.

[17] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
480–491.

[18] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and Kevin RB Butler.
2017. Firmusb: Vetting usb device firmware using domain informed symbolic
execution. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2245–2262.

[19] Yikun Jiang, Wei Xie, and Yong Tang. 2018. Detecting Authentication-Bypass
Flaws in a Large Scale of IoT Embedded Web Servers. In Proceedings of the 8th
International Conference on Communication and Network Security. ACM, 56–63.

[20] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and
Yongdae Kim. 2020. FirmAE: Towards Large-Scale Emulation of IoT Firmware
for Dynamic Analysis. In Annual Computer Security Applications Conference.
733–745.

[21] lighttpd. 2021. Home - Lighttpd - fly light. [Online]. Avaliable:
https://www.lighttpd.net.

[22] Knud Lasse Lueth. [n. d.]. Top 10 IoT applications in 2020. [Online]. Avaliable:
https://iot-analytics.com/top-10-iot-applications-in-2020.

[23] mini httpd. 2018. mini-httpd - small HTTP server. [Online]. Avaliable:
https://acme.com/software/mini_httpd.

[24] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is NotWhat You Crash: Challenges in Fuzzing

Embedded Devices.. In NDSS.
[25] OWASP. 2021. The OWASP Top 10 2021. [Online]. Avaliable:

https://owasp.org/Top10/.
[26] Danny Palmer. [n. d.]. These new vulnerabilities put millions of IoT devices at

risk, so patch now. [Online]. Avaliable: https://www.zdnet.com/article/these-
new-vulnerabilities-millions-of-iot-devives-at-risk-so-patch-now/.

[27] Giancarlo Pellegrino and Davide Balzarotti. 2014. Toward Black-Box Detection
of Logic Flaws in Web Applications.. In NDSS.

[28] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 709–724.

[29] Abdullah Qasem, Paria Shirani, Mourad Debbabi, Lingyu Wang, Bernard Lebel,
and Basile L Agba. 2021. Automatic Vulnerability Detection in Embedded Devices
and Firmware: Survey and Layered Taxonomies. ACM Computing Surveys (CSUR)
54, 2 (2021), 1–42.

[30] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn,
Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vi-
gna. 2021. DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices. In 42nd IEEE Symposium on Security and
Privacy 2021.

[31] Nilo Redini, AravindMachiry, DipanjanDas, Yanick Fratantonio, Antonio Bianchi,
Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2017. Bootstomp: on the security of bootloaders in mobile devices. In 26th
{USENIX} Security Symposium ({USENIX} Security 17). 781–798.

[32] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard Shrobe, and
Mathias Payer. 2019. FirmFuzz: automated IoT firmware introspection and analy-
sis. In Proceedings of the 2nd International ACM Workshop on Security and Privacy
for the Internet-of-Things. 15–21.

[33] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dolgin, Alessan-
dro Armando, and Umberto Morelli. 2017. Large-scale analysis & detection of
authentication cross-site request forgeries. In 2017 IEEE European symposium on
security and privacy (EuroS&P). IEEE, 350–365.

[34] Enze Wang, Baosheng Wang, Wei Xie, Zhenhua Wang, Zhenhao Luo, and Tai
Yue. 2020. EWVHunter: Grey-Box Fuzzing with Knowledge Guide on Embedded
Web Front-Ends. Applied Sciences 10, 11 (2020), 4015.

[35] Wei Xie, Chao Zhang, Pengfei Wang, Zhenhua Wang, and Qiang Yang. 2021.
ARGUS: Assessing Unpatched Vulnerable Devices on the Internet via Efficient
Firmware Recognition. In Proceedings of the 2021 ACM Asia Conference on Com-
puter and Communications Security. 421–431.

[36] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 363–376.

[37] Qidi Yin, Xu Zhou, and Hangwei Zhang. 2021. FirmHunter: State-Aware and
Introspection-Driven Grey-Box Fuzzing towards IoT Firmware. Applied Sciences
11, 19 (2021), 9094.

[38] Hangwei Zhang, Kai Lu, Xu Zhou, Qidi Yin, Pengfei Wang, and Tai Yue. 2021.
SIoTFuzzer: Fuzzing Web Interface in IoT Firmware via Stateful Message Genera-
tion. Applied Sciences 11, 7 (2021), 3120.

[39] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng, and Kehuan
Zhang. 2019. CryptoREX: Large-scale Analysis of Cryptographic Misuse in IoT
Devices. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019). 151–164.

[40] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot firmware via
augmented process emulation. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 1099–1114.

[41] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and understanding the security hazards in
the interactions between iot devices, mobile apps, and clouds on smart home
platforms. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1133–
1150.

[42] Chaoshun Zuo and Zhiqiang Lin. 2017. Smartgen: Exposing server urls of mobile
apps with selective symbolic execution. In Proceedings of the 26th International
Conference on World Wide Web. 867–876.

[43] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why does your data leak?
uncovering the data leakage in cloud from mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 1296–1310.

[44] Chaoshun Zuo, Wubing Wang, Zhiqiang Lin, and Rui Wang. 2016. Automatic
Forgery of Cryptographically Consistent Messages to Identify Security Vulnera-
bilities in Mobile Services.. In NDSS.

[45] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. Authscope: Towards
automatic discovery of vulnerable authorizations in online services. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
799–813.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Embedded Web Applications
	2.2 Hidden Interfaces of Embedded Web Applications
	2.3 Challenges in Exposing Hidden Interfaces

	3 Design
	3.1 Enumerating Interfaces
	3.2 Delivering Probing Requests
	3.3 Identifying Unprotected Interfaces
	3.4 Identifying Hidden Interfaces

	4 Evaluation
	4.1 Overall Results
	4.2 Performance
	4.3 Case Studies
	4.4 Discussion

	5 Related Work
	5.1 IoT Device Testing
	5.2 Detection of Broken Access Control

	6 Conclusion
	References

